КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод парабол
Пусть f (x) имеет первую и вторую производную. Разложим f (x) в ряд Тейлора в некоторой точке x k, ограничиваясь при этом тремя членами разложения: . (3) Иными словами, аппроксимируем нашу функцию в точке x k параболой. Для этой параболы можно аналитически вычислить положение экстремума как корень уравнения первой производной от (3): . Пусть минимум аппроксимирующей параболы находится в точке x k+1. Тогда вычислив значение функции f (x k+1), мы получаем новую точку приближения к минимуму. Обычно в практических реализациях данного метода не используют аналитический вид первой и второй производных f (x). Их заменяют конечно-разностными аппроксимациями. Наиболее часто берут симметричные разности с постоянным шагом h: ; . Это эквивалентно аппроксимации функции параболой, проходящей через три близкие точки x k+ h, x k, x k– h. Окончательное выражение, по которому можно строить итерационный процесс, таково: . (4) Данный метод отличается от вышеизложенных высокой скоростью сходимости. Вблизи экстремума, вплоть до расстояний ~ h 2, сходимость практически не отличается от квадратичной. Однако алгоритм требует постоянного контроля сходимости. Например, итерационный процесс будет сходиться к минимуму, если 1) знаменатель формулы (4) должен быть >0. Если это не так, нужно сделать шаг в обратном направлении, причем достаточно большой. Обычно в итерационном процессе полагают . Иногда ради упрощения расчетов полагают , однако это существенно уменьшает скорость сходимости. 2) . Если это не так, то от x k следует сделать шаг с τ = ½. Если и при этом условие убывания не выполнено, уменьшают τ и вновь делают шаг.
Дата добавления: 2014-01-07; Просмотров: 286; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |