КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример построения интервального вариационного рядаПусть измерен некоторый экономический показатель в 30 регионах: 23 29 35 7 11 18 23 30 36 18 11 8 13 20 25 27 14 30 20 20 24 19 21 26 22 16 26 25 33 27 Расставим экспериментальные данные в возрастающем порядке: 6 8 11 11 13 14 16 18 18 19 20 20 20 21 22 23 23 24 25 25 26 26 27 27 29 30 30 33 35 36 По таблице 1 определяем число классов Таблица 1
Для n=30 число классов K=6. Найдем минимальное и максимальное значения вариант: хmin=7, хmax=36. Определим вариационный размах R= хmin-хmax=36-6=30. Определим величину классового интервала: D===5. Хн1= хmin=6; Хв1= хmin+D=6+5=11 Обобщим полученные данные в таблице: Таблица 2
График, называемый гистограммой получается, если в прямоугольной системе координат отложить по оси абсцисс границы классов, а по оси ординат их частоты.
Если серединные точки вершин прямоугольников гистограммы соединить между собой, получится график дискретного варьирования, называемый полигоном распределения.
1.2. Мода распределения – это наиболее часто встречающееся значение ряда. 1.3. Среднее арифметическое распределения находится по формуле 1.4. Дисперсия распределения находится по формуле: D= 1.5. Стандартное отклонение S=
Дата добавления: 2014-01-07; Просмотров: 247; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |