КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Материалы для проектируемых железобетонных конструкций назначаются в соответствии с нормативными требованиями (см. лекцию №2)
Теоретической основой рассматриваемого программного продукта является метод конечных элементов, реализованный в форме перемещений. Выбор именно этой формы разработчики объясняют простотой алгоритмизации и физической интерпретации, возможностью создания единых методов построения матриц жесткости и векторов нагрузок для различных типов конечных элементов, возможностью учета произвольных граничных условий и сложной геометрии рассчитываемой конструкции. Стальные фиксаторы широко используются при выполнении железобетонных конструкций, но они могут коррозировать даже в помещениях с нормальной влажностью (для защиты можно применить защитные пластмассовые колпачки). Приспособления для строповки элементов сборных конструкций. Примеры выполнения строповочных петель и отверстий. При конструировании сборных железобетонных изделий должны быть предусмотрены устройства для их строповки: строповочные отверстия со стальными трубками, монтажные петли из арматурных стержней (см. рис. 7.1 и 7.2). Железобетонные изделия могут иметь несколько строповочных устройств, разнящихся по назначению: для извлечения из опалубки, для погрузочно-разгрузочных работ, для монтажа при возведении здания. По возможности рекомендуется предусматривать строповку железобетонных элементов с использованием существующих отверстий, пазов в самом изделии, а также использовать его очертание (форму). Для монтажных (подъемных) петель применяется стержневая горячекатаная арматура класса А240 марок Ст3сп и Ст3пс, а при расчетной зимней температуре ниже минус 40°С – только марки Ст3сп. Для железобетонных конструкций, при изготовлении которых предусматривается механическое заглаживание поверхностей, конструируются строповочные петли в углублениях (см. рис.7.17). Строповочные петли должны быть надежно заделаны в бетон на длину анкеровки (см. лекцию №2 и рисунки 7.17 и 7.18). Строповочные петли могут использоваться для сопряжения горизонтальных и вертикальных элементов здания (см. рис. 7.19). Рис. 7.17. Строповочные петли многопустотной плиты перекрытия
Рис. 7.18. Строповочная петля плоской лестничной площадки
Рис. 7.19. Сопряжение элементов железобетонных перекрытий и кирпичных стен с использованием строповочных петель
Лекция № 8 Проектирование железобетонных конструкций с использованием программного комплекса ЛИРА. Общие сведения о программном комплексе ЛИРА. Выбор программного комплекса ЛИРА для выполнения расчета строительных конструкций, в том числе железобетонных конструкций, продиктован: - удобством ввода исходных данных и представления результатов расчета с помощью графического редактора ЛИР-ВИЗОР; - наличием в составе программного комплекса ЛИРА программы, ориентированной на расчет железобетонных конструкций (ЛИР-АРМ), а также конструктора сечений ЛИР-КС; - доступностью программного комплекса. Его разработчик – НИИ автоматизированных систем в строительстве – НИИАСС (Украина) – через своего официального представителя в России "Компьютерный центр Моспроект" распространяет этот программный продукт. Кроме того, на сайт в Internet официальный представитель выставляет ранние версии программного продукта и демонстрационные версии последних разработок. В компьютерном центре организовано изучение программного продукта ЛИРА, предоставляется описание работы с программным продуктом [20, 21, 22]. Перед выполнением расчета с использованием программного комплекса ЛИРА необходимо: - назначить расчетную схему здания или отдельного конструктивного элемента; - задать размеры поперечных сечений элементов расчетной схемы; - назначить характеристики бетона и арматуры; - собрать нагрузки для приложения к элементам расчетной схемы. После выполнения расчета переходят к конструированию железобетонных конструкций. Подготовка исходных данных для выполнения расчетов. Расчетные схемы зданий и конструктивных элементов. Расчетные схемы классифицируются: - по характеру учета пространственной работы – плоские (рис 8.1 а, б, в, г, д) объемные (рис. 8.1 ж, и); - по характеру конструкции, положенной в основу расчетной схемы – стержневые (рис. 8.1 б, в, и), пластинчатые (рис. 8.11 а, г, ж) комбинированные (рис. 8.1 д). Рис. 8.1. Расчетные схемы: а – плиты перекрытия, б – поперечной рамы здания, в – фермы, г – стенки, д – балочного перекрытия, ж – бассейна, и – объемной рамы здания На рисунке 8.1 показаны направления глобальных осей координат. Плита перекрытия располагается в координатной плоскости XOY; поперечная рама, ферма и стенка – в координатной плоскости XOZ. Учет плоскости расположения расчетной схемы или составных частей объемной расчетной схемы является важным обстоятельством при выборе направления закрепления от перемещений опорных узлов расчетной схемы, а также направления приложения нагрузок. Опорные узлы расчетной схемы могут быть закреплены шарнирно и жестко. Закреплен опорный узел шарнирно или жестко – это зависит от конструктивного выполнения этого узла. На рисунке 8.2 приведены конструктивные решения узлов опирания железобетонных конструкций.
Рис. 8.2. Конструктивные решения узлов сопряжения железобетонных конструкций: а – многопустотной плиты с ригелем (шарнирное сопряжение), б - многопустотной плиты с кирпичной стеной (шарнирное сопряжение), в - колонны с фундаментом (жесткое сопряжение), г - монолитной плиты со стеной (жесткое сопряжение)
Назначение размеров поперечных сечений элементов Исходные данные для выполнения расчета железобетонных конструкций должны содержать сведения о размерах поперечных элементов расчетной схемы. Они назначаются предварительно, опираясь на опыт проектирования железобетонных конструкций, в том числе, собранный в Российском Строительном каталоге (СК-2 – типовые проекты предприятий, зданий и сооружений, СК-3 – строительные конструкции и изделия). Рекомендации по назначению высоты поперечных сечений вертикальных и горизонтальных несущих элементов монолитных жилых и общественных зданий стеновой и каркасной конструктивных систем [23] сведены в таблицу 8.1. Поясняющие схемы к таблице 8.1 приведены на рисунке 8.3. Рис. 8.3. Варианты конструктивных решений монолитных зданий: а) – стеновая конструктивная система (1- плоская плита перекрытия, 3 –внутренняя несущая стена); б) и в) – каркасная конструктивная система (1 – плоское перекрытие, 2 – ребристое перекрытие, 4 – колонна) Таблица 8.1
В соответствии с видом расчетной схемы (см. рис. 8.1) возникает необходимость приложения нагрузок на узлы, стержни, пластины. Например, при расчете фермы сосредоточенная нагрузка на узлы фермы может передаваться от ребер плит покрытия. К стержням-ригелям поперечной рамы каркасного здания прикладывается погонная равномерно распределенная нагрузка от опирающихся на них многопустотных плит. Плита перекрытия рассчитывается на равномерно распределенную нагрузку от веса пола и полезной нагрузки на перекрытие. Значение полезной нагрузки (оборудование, люди) определяется назначением здания и помещения. При определении нагрузок на строительные конструкции пользуются указаниями СНиП 2.01.07-85* "Нагрузки и воздействия" [9]. К узлам и элементам расчетной схемы можно прикладывать нагрузки, а также задавать нагрев элементов и смещение узлов Положительное значение нагрузки соответствует ее действию в направлении против координатной оси, момента – вращению по часовой стрелки, если смотреть с конца оси.
Дата добавления: 2014-01-07; Просмотров: 589; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |