Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Эпистемологический анархизм




Это может показаться разочарованием, однако, как обычно, все зависит от точки зрения. Можно утверждать, и это делает Пол Фейерабенд, что поскольку безраздельное господство парадигмы обедняет науку, а главное - подавляет личность, универсализм должен быть вообще отброшен. Во главу угла следует поставить теорию как таковую. Никакую теорию нельзя опровергнуть с помощью фактов, утверждает он. Всегда возможны ошибки, неточности, для корректировки теории возможно введение дополнительных гипотез, наконец, можно просто отмахнуться от новых фактов, игнорировать их. Теорию можно опровергнуть только с помощью новой теории. Поэтому теории следует множить. И если Кун говорит о сопоставлении с фактами общепринятой парадигмы, то Фейерабенд сопоставляет с фактами альтернативные и изначально равноправные теории. Главенства не признается ни за какой из них, в научном познании (эпистемологии, как называют его философы) царит анархизм.

Может показаться, и так считают позитивисты, что теория теорией, а результат эксперимента не зависит ни от чего. Однако Фейерабенд подчеркивает, что не существует абсолютного языка наблюдений, автономного по отношению к различным теориям, он определяется соглашением, подразумеваемым той или иной теорией. Например, бытовую эмпирическую ситуацию - удержание на весу чемодана - Аристотель опишет как "я преодолеваю стремление чемодана к своему месту", Ньютон как "я преодолеваю силу гравитационного взаимодействия Земля-чемодан", а Эйнштейн как "я преодолеваю искривление пространства-времени". И измеряя, они измерят разное, явление же останется тем же. Таким образом, у сменяющих друг друга теорий нет общего эмпирического языка, и терминология эксперимента привязана к теории, а не к самому опыту. Тогда является ли наука, и в том числе "нормальная" наука, рациональной деятельностью? Нет, она просто миф, и ее развитие представляет собой создание все новых альтернатив, причем следует сопоставлять не теорию с экспериментом, а теорию с теорией. Ясного критерия демаркации не выдвигается, за исключением требования логической непротиворечивости. И только. Подтверждающие факты не обязательны. Само понятие истины упраздняется, и отражение истины целью науки не является. В рассмотрение включен субъект научной деятельности - ученый, научная школа, сообщество. Таким образом, в рамках эпистемологического анархизма личность человека обретает ценность и в ранее "запретных для ее влияния" естественных науках. Наука ничем не отличается от других сфер человеческой деятельности.

Подведем итоги. Ученые от Галилея до Эйнштейна полагали, что высшая цель науки - поиск истинного устройства мира. Сторонники логического позитивизма отказались признать за внешним миром какую-либо непосредственно не воспринимаемую сущность и сосредоточились на вполне конкретных его проявлениях (и их приложениях), используя подходящую теорию в качестве удобного инструмента для краткой записи результатов. Истина потеряла в возвышенности, а подтвердить ее можно было подходящим наблюдением. Сторонники фальсификационизма хоть и водворили истину на принадлежавшее ей место во внешнем мире, но отказались и "смотреть в ее сторону", увлекшись истреблением ее фальшивых образов. Сама же она оказалась им не нужной, поскольку была признана недостижимой. А у сторонников парадигм теория стала не описанием реальности, а средством решения головоломок. О какой же истине может идти речь, если правила решения то и дело меняются? Анархисты же (эпистемологические) вообще объявили истину вредной, так как она порабощает человека. Все эти подходы полезно иметь в виду при рассмотрении той или иной концепции современного естествознания в последующих главах.

С позиций критерия демаркации можно сказать, что, предлагая новую теорию, следует

* позаботиться о том, чтобы она была подтверждена экспериментами (логический позитивизм);

* рассмотреть с ее помощью такой предполагаеый эксперимент, отрицательный результат которого мог бы опровергнуть эту теорию (фальсификационизм);

* быть готовым к тому, что научное сообщество не встретит вас цветами (теория парадигм);

* тем не менее, не бояться выступить со своей идеей (эпистемологический анархизм).

 

 

Глава 2

Вселенная, звезды, планеты

Космические масштабы; методы исследования; распределение вещества во Вселенной; звезды и их эволюция; аномальное развитие звезд; космологическая проблема; Солнечная система; планеты Солнечной системы.

 

"...И только две вещи удивляют меня: звездное небо над моей головой и моральный закон во мне."

И.Кант

"...Ведь если звезды зажигают -
Значит - это кому-нибудь нужно?"

В.Маяковский

 

Рассмотрение современных естественнонаучных концепций мы начнем с мегамира - той части окружающего мира, которую можно обнаружить, посмотрев ночью на небо. Что за светящиеся точки видны там на черном фоне (и почему, кстати, фон черный, а не голубой, как днем?)? Светящиеся точки на черном фоне - так называемые звезды - вот, собственно, все, что мы можем воспринять с помощью органов чувств. Где-то они распределены гуще, где-то реже. Большинство из них образуют устойчивые конфигурации - созвездия - час за часом двигающиеся по небу, некоторые - планеты - медленно, месяц за месяцем перемещаются относительно других. Можно ограничиться констатацией этого факта, можно путем продолжительных наблюдений попытаться найти закономерности видимых перемещений. Пожалуй, это все. Если не задавать вопросов, что это за объекты и почему они двигаются так, а не иначе.

Первые попытки объяснения ориентировались на волю сверхъестественных существ - богов, управляющих движением небесных тел. Впоследствии сопоставление геометрических и временных координат небесных тел с судьбами людей привело к возникновению астрологии. Ни то, ни другое не является предметом естественнонаучного познания, в первом случае по определению, во втором - поскольку не отвечает на вопросы, выделенные курсивом. К концу ХХ века сложились концепции, на основе которых мы не только сумели задать множество новых более конкретных вопросов и ответить на них, но и связать свои представления о мире небесных тел с природой явлений, наблюдаемых в лабораториях.

Наше уникальное дневное светило - Солнце - стало одной из звезд небосклона, его тепло и свет оказались той же природы, что и едва заметный свет звезд, а их источник - ядерные реакции - воспроизведен в земных условиях. Планеты, проявляя в своем движении законы механики, стали двигаться по орбитам вокруг центрального тела - Солнца - в соответствии с законом всемирного тяготения.

Одной из проблем, в связи с которыми все это долгое время не было понято, явились космические масштабы. Если представить себе Солнце в виде шара диаметром 7 см, то ближайшая к нему планета (Меркурий) будет находиться на расстоянии 2,8 м, наша Земля - в виде шарика диаметром 0,5 мм будет на расстоянии 7,6 м, а самая дальняя планета Плутон - в 300 м от Солнца. Самая же близкая из других звезд - Проксима Центавра - расположится в 2000 км, что соответствует расстоянию от С-Петербурга до Сухуми. Неудивительно, что одинаковая природа Солнца и других звезд долгое время не была осознана. Временные масштабы, характерные для Вселенной, тоже не отстали. Если начать отсчет времени с так называемого Большого Взрыва - гипотетической ситуации, когда все вещество Вселенной находилось в одной единственной бесконечно малой точке, а потом начало разлетаться - и сопоставить ему 0 ч. 0 мин. первого января, а всю последующую историю развития Вселенной до настоящего времени уложить в один год, то Солнце образовалось только 9 сентября, Земля 14 сентября, бактерии появились 9 октября, первые клетки с ядром 15 ноября, динозавры 24 декабря, а первые люди только в 22 ч. 30 мин. 31 декабря. А ведь человек существует уже несколько миллионов лет.

Как же можно было сделать подобные оценки? Астрономические наблюдения ведутся в трех диапазонах электромагнитных волн: радио, оптическом и рентгеновском с разных точек земной орбиты. Зная ее диаметр и измеряя углы, под которыми видны те или иные светила, можно найти расстояния до них. Анализируя спектры излучения звезд, можно установить их химический состав, а кроме того, обнаружить так называемое красное (т.е. в сторону более длинных волн) смещение этих спектров на шкале частот относительно их обычного расположения. Э.Хаббл предположил, что красное смещение связано с тем, что звезды удаляются от нас (эффект Допплера), при этом оказалось, что чем дальше расположено от нас то или иное скопление звезд (галактика), тем больше сдвиг, тем быстрее все они двигаются от нас. Такое разбегание галактик говорит о том, что раньше все они были рядом. Измерение скорости позволяет найти время, когда именно они были рядом, и, таким образом, сделать приведенные оценки.

Из чего же состоит Вселенная? Хорошо видимая на ночном небе полоса, густо усеянная звездами, - Млечный путь - представляет собой "вид в профиль" нашей галактики, той к которой принадлежит Солнце. Кроме Солнца, в нее входит еще порядка 150 миллиардов звезд. Галактика огромна, и, как видно из приведенного примера с Проксимой Центавра, межзвездные расстояния намного превосходят размеры самих звезд. Можно сказать, что звезды в галактике представляют собой чрезвычайно разреженный газ частиц. Но наша галактика не единственна. Существует множество других, столь же гигантских, образующих Метагалактику - всю наблюдаемую Вселенную. В свою очередь межгалактические расстояния сравнимы с размерами самих галактик, поэтому можно сказать, что, рассматривая галактики как частицы, мы имеем весьма вязкую среду.

Э.Хаббл предложил следующую классификацию галактик:

* эллиптические, сфероиды различной сплюснутости, состоящие в основном из старых звезд (как, кстати, определить их возраст?);

* спиральные, в "рукавах" которых находятся молодые звезды;

* неправильной формы.

Все они образовались из протооблаков межзвездного вещества, обладающих различными массами и различными моментами количества движения - характеристикой, показывающей, как двигались различные части облаков относительно друг друга. В центрах галактик находятся ядра - компактные скопления огромного количества звезд, выделяющих гигантские энергии во всех диапазонах длин волн.

Пространство между галактиками и между звездами внутри галактик не пусто. В каждом кубическом сантиметре межзвездного пространства в среднем находится один атом вещества. Если атомов в каждом кубическом сантиметре наберется с десяток, то о такой области пространства говорят как об облаке. Оно может быть обнаружено с помощью радиотелескопов и хорошо заметно на окружающем фоне. Для сравнения напомним, что в воздухе, которым мы дышим, содержится порядка 1019 атомов в каждом кубическом сантиметре, а в самом лучшем вакууме, который может быть получен в земных лабораториях, в каждом кубическом сантиметре содержится 105 атомов.

В 1963 году были обнаружены загадочные квазизвездные объекты (квазары), представляющие собой чрезвычайно компактные образования, размером со звезду, но излучающие, как целая галактика. В их спектре на сплошном фоне излучения видны яркие линии, сильно смещенные в красную сторону, что говорит о том, что квазары удаляются от нас с огромной скоростью (и расположены очень далеко от нашей галактики).

Однако, самым распространенным объектом во Вселенной являются звезды. Как ни странно, мы знаем о звездах больше, чем о Солнечной системе. Но она ведь у нас под рукой одна, а звезд - очень много. Сопоставляя данные для различных звезд, можно получить общие закономерности и проверить их выполнение на примерах других звезд. Обсудим подробнее, что представляют собой звезды - эти светящиеся точки на небосклоне - в свете современной концепции.

 

Сначала формируется протозвезда. Частицы гигантского движущегося газопылевого облака в некоторой области пространства притягиваются между собой за счет гравитационных сил. Происходит это очень медленно, ведь силы, пропорциональные массам входящих в облако атомов (в основном атомов водорода) и пылинок, чрезвычайно малы. Однако постепенно частицы сближаются, плотность облака нарастает, оно становится непрозрачным, образующийся сферический "ком" начинает понемногу вращаться, растет и сила притяжения, ведь теперь масса "кома" велика. Все больше и больше частиц захватывается, все больше плотность вещества. Внешние слои давят на внутренние, давление в глубине растет, а, значит, растет и температура. (Именно так обстоит дело с газами, которые были подробно изучены на Земле). Наконец, температура становится такой большой - несколько миллионов градусов, - что в ядре этого образующегося тела создаются условия для протекания ядерной реакции синтеза: водород начинает превращаеться в гелий. Об этом можно узнать, регистрируя потоки нейтрино - элементарных частиц, выделяющихся при такой реакции. Реакция сопровождается мощным потоком электромагнитного излучения, которое давит (силой светового давления, впервые измеренной в Земной лаборатории П.Лебедевым) на внешние слои вещества, противодействуя гравитационному сжатию. Наконец, сжатие прекращается, поскольку давления уравновешиваются, и протозвезда становится звездой. Чтобы пройти эту стадию своей эволюции протозвезде нужно несколько миллионов лет, если ее масса больше солнечной, и несколько сот миллионов лет, если ее масса меньше солнечной. Звезд, массы которых меньше солнечной в 10 раз, очень мало.

Масса является одной из важных характеристик звезд. Любопытно отметить, что довольно распространены двойные звезды - образующиеся вблизи друг друга и вращающиеся вокруг общего центра. Их насчитывается от 30 до 50 процентов от общего числа звезд. Возникновение двойных, вероятно, связано с распределением момента количества движения исходного облака. Если у такой пары образуется планетная система, то движение планет может быть довольно замысловатым, а условия на их поверхностях будут сильно изменяться в зависимости от расположения планеты на орбите по отношению к светилам. Весьма возможно, что стационарных орбит, вроде тех, что могут существовать в планетных системах одинарных звезд (и существуют в Солнечной системе), не окажется совсем. Обычные, одинарные звезды в процессе своего образования начинают вращаться вокруг своей оси.

Другой важной характеристикой является радиус звезды. Существуют звезды - белые карлики, радиус которых не превышает радиуса Земли, существуют и такие - красные гиганты, радиус которых достигает радиуса орбиты Марса. Химический состав звезд по спектроскопическим данным в среднем такой: на 10000 атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, 1 атом углерода, остальных элементов еще меньше. Из-за высоких температур атомы ионизируются, так что вещество звезды является в основном водородно-гелиевой плазмой - в целом электрически нейтральной смесью ионов и электронов. В зависимости от массы и химического состава исходного облака образовавшаяся звезда попадает на тот или иной участок так называемой главной последовательности на диаграмме Герцшпрунга-Рессела. Последняя представляет собой координатную плоскость, на вертикальной оси которой откладывается светимость звезды (т.е. количество энергии, излучаемой ей в единицу времени), а на горизонтальной - ее спектральный класс (характеризующий цвет звезды, который в свою очередь зависит от температуры ее поверхности. При этом "синие" звезды более горячие, чем "красные", а наше "желтое" Солнце имеет промежуточную температуру поверхности порядка 6000 градусов) (рис.2). Традиционно спектральные классы от горячих к холодным обозначаются буквами O,B,A,F,G,K,M (последовательность легко запомнить с помощью мнемонического правила "O, Be A Fine Girl, Kiss Me"), при этом каждый класс делится на десять подклассов. Так, наше Солнце имеет спектральный класс G2. На диаграмме видно, что большинство звезд располагается вдоль плавной кривой, идущей из левого верхнего угла в правый нижний. Это и есть главная последовательность. Наше Солнце также находится на ней. По мере "выгорания" водорода в центре звезды ее масса немного меняется и звезда немного смещается вправо вдоль главной последовательности. Звезды с массами порядка солнечной находятся на главной последовательности 10-15 млрд. лет (наше Солнце находится на ней уже около 4,5 млрд. лет). Постепенно энергии в центре звезды выделяется все меньше, давление падает, ядро сжимается, и температура в нем возрастает. Ядерные реакции протекают теперь только в тонком слое на границе ядра внутри звезды. В результате звезда в целом начинает "разбухать", а ее светимость увеличиваться. Звезда сходит с главной последовательности и перебирается в правый верхний угол диагрaммы Герцшпрунга-Рессела, превращаясь в так называемый "красный гигант". После того, как температура сжимающегося (теперь уже гелиевого) ядра красного гиганта достигнет 100-150 млн. градусов, начинается новая ядерная реакция синтеза - превращение гелия в углерод. Когда и эта реакция исчерпает себя, происходит сброс оболочки - существенная часть массы звезды превращается в планетарную туманность. Горячие внутренние слои звезды оказываются "снаружи", и их излучение "раздувает" отделившуюся оболочку. Через несколько десятков тысяч лет оболочка рассеивается, и остается небольшая очень горячая плотная звезда. Медленно остывая, она переходит в левый нижний угол диаграммы и превращается в "белый карлик". Белые карлики, по-видимому, представляют собой заключительный этап нормальной эволюции большинства звезд.

Но встречаются и аномалии. Некоторые звезды время от времени вспыхивают, превращаясь в новые звезды. При этом они каждый раз теряют порядка сотой доли процента своей массы. Из хорошо известных звезд можно упомянуть новую в созвездии Лебедя, вспыхнувшую в августе 1975 года и пробывшую на небосводе несколько лет. Но иногда случаются и вспышки сверхновых - катастрофические события, ведущие к полному разрушению звезды, при которых за короткое время излучается энергии больше, чем от миллиардов звезд той галактики, к которой принадлежит сверхновая. Такое событие зафиксировано в китайских хрониках 1054 года: на небосводе появилась такая яркая звезда, что ее можно было видеть даже днем. Результат этого события известен нам теперь как Крабовидная туманность (рис.3), "медленное" распространение которой по небу мы наблюдаем в последние 300 лет. Скорость разлета ее газов в результате взрыва составляет порядка 1500 м/с, но она находится очень далеко. Сопоставляя скорость разлета с видимым размером Крабовидной туманности, мы можем рассчитать время, когда она была точечным объектом, и найти его место на небосклоне - эти время и место соответствуют времени и месту появления звезды, упомянутой в хрониках.

 

Если масса звезды, оставшейся после сброса оболочки "красным гигантом" превосходит солнечную в 1,2-2,5 раза, то, как показывают расчеты, устойчивый "белый карлик" образоваться не может. Звезда начинает сжиматься, и ее радиус достигает ничтожных размеров в 10 км, а плотность вещества такой звезды превышает плотность атомного ядра. Предполагается, что такая звезда состоит из плотно упакованных нейтронов, поэтому она так и называется - нейтронная звезда. Согласно этой теоретической модели у нейтронной звезды имеется сильное магнитное поле, а сама она вращается с огромной скоростью - несколько десятков или сотен оборотов в секунду. И только обнаруженные (именно в Крабовидной туманности) в 1967 году пульсары - точечные источники импульсного радиоизлучения высокой стабильности - обладают как раз такими свойствами, каких следовало ожидать от нейтронных звезд. Наблюдаемое явление подтвердило концепцию.

Если же оставшаяся масса еще больше, то гравитационное сжатие неудержимо сжимает вещество и дальше. Вступает в действие одно из предсказаний общей теории относительности, согласно которому вещество сожмется в точку. Это явление называется гравитационным коллапсом, а его результат - "черной дырой". Это название связано с тем, что гравитационная масса такого объекта настолько велика, силы притяжения настолько значительны, что не только какое-либо вещественное тело не может покинуть окрестность черной дыры, но даже свет - электромагнитный сигнал - не может ни отразиться, ни выйти "наружу". Таким образом, непосредственно наблюдать черную дыру невозможно, можно лишь догадаться о ее существовании по косвенным эффектам. Двигаясь в пространстве по направлению к черной дыре (о которой мы пока ничего не знаем), можно обнаружить, что рисунок созвездий, расположенных прямо по курсу начинает меняться. Это связано с тем, что свет, идущий от звезд и проходящий неподалеку от черной дыры, отклоняется ее тяготением. По мере приближения к дыре возникнет пустая область, окруженная светящимися точками-звездами, в том числе и такими, которых раньше не наблюдалось. Свет от некоторых звезд может, проходя мимо дыры, поворачивать вокруг нее, а затем попадать в приемные устройства наблюдателя. Таким образом, одна звезда может давать несколько изображений в разных местах. Все это, конечно, противоречит как нашему жизненному опыту, так и классическим представлениям, согласно которым свет распространяется прямолинейно. Однако в пользу существования черных дыр говорит целый ряд косвенных астрономических наблюдений, а отклонение света под действием гравитационного притяжения регистрируется уже при прохождении луча мимо такого "нормального" объекта, как Солнце.

На фоне перечисленных сведений об устройстве Вселенной основная космологическая проблема - откуда же взялось первоначальное облако межзвездного вещества, из которого произошли все эти объекты, - остается по-прежнему загадочной. Утверждение "Вселенная существовала всегда" оставляет место для вопроса, всегда ли она была такой, какой мы видим ее сейчас. Ведь если Вселенная сохраняет свои свойства во времени и представляет собой более или менее равномерное распределение звезд в пространстве, то возникает т.н. "фотометрический парадокс": ночное небо должно сиять, поскольку в любом направлении ближе или дальше от нас будет иметься звезда. Но этого мы не видим. Зато мы обнаружили, что имеет место красное смещение. И полагаем, что все галактики разлетаются. Значит, когда-то все они были поблизости друг от друга в какой-то малой области. А в "остальном пространстве" было пусто, и, значит, говорить о том, что равномерное распределение сохранялось постоянно, не приходится. Таким образом, Вселенная эволюционирует. В настоящее время полагают, что примерно 25 млрд. лет назад все вещество было сосредоточено в одной точке. Такая ситуация не позволяет говорить о существовании даже таких основополагающих понятий, как пространство и время. Не было тогда ни пространства, ни времени в обычном смысле. Затем произошел Большой Взрыв, в результате которого образовались протоны, электроны и другие элементарные частицы. Взаимодействие излучения с веществом на определенном этапе привело к тому, что излучение и вещество стали эволюционировать с разным темпом. Об этом мы можем догадаться по существованию так называемого реликтового излучения, характеризующего раннюю стадию развития Вселенной, которое сейчас наблюдается в виде однородного фона длинноволнового излучения, наблюдаемого с любого направления. Частицы стремительно разлетались, взаимодействуя между собой в условиях гигантских температур, постепенно образовались облака, звезды, в недрах которых идут процессы ядерного синтеза тяжелых элементов, и к настоящему времени мы имеем то, что имеем. Но к чему же это все приведет? Все зависит от того, какова средняя плотность вещества во Вселенной. Если она больше некоторого критического значения, то реализуется модель замкнутой Вселенной. Под действием сил гравитационного притяжения расширение прекратится (примерно еще через 25 млрд. лет) и начнется сжатие, в результате которого все вещество вновь сожмется в точку. Если же плотность меньше критической, то гравитационные силы не смогут остановить расширение. Реализуется модель открытой Вселенной. Через 1015 лет звезды остынут, через 1019 они покинут свои галактики, еще через невообразимо большие промежутки времени (если известные сейчас физические законы все еще будут действовать) в результате радиоактивного распада все вещество превратится в железо, еще гораздо позже железные "капли" превратятся в нейтронные звезды и черные дыры, которые через 1067 лет испарятся. Оценить плотность наблюдаемой Вселенной непросто, хотя последние данные указывают на то, что, вероятно, она ниже критической, и Вселенная является открытой.

Около одной из звезд этой Вселенной вращается девять планет, в число которых входит и наша Земля. А как образовались планеты? Является ли существование у звезд планетных систем закономерным или случайным событием? Так, И.Кант и П.Лаплас были сторонниками закономерности возникновения планет. Оба они полагали, что все начиналось с туманности, которая впоследствии превратилась в звезду, вокруг которой вращались планеты. Однако Кант полагал, что туманность была холодной, затем она стала сжиматься, образовалось Солнце, а затем из него выделились планеты. В то время как Лаплас считал, что туманность была горячей, сжимаясь, она сформировала кольца, которые впоследствии стали планетами, а затем центральная часть сжалась еще сильнее и превратилась в звезду. "Критическим вопросом" к каждой из гипотез является вопрос о распределении момента количества движения в Солнечной системе. Составить представление об этой характеристике можно на примере фигуриста, выполняющего вращение. Пока его руки широко разведены в стороны, вращение довольно медленно, часть момента количества движения сосредоточена в них. Если же фигурист плотно прижмет руки к телу, его вращение ускорится. В Солнечной системе 98 % полного момента количества движения приходится на орбитальное движение планет, и только 2 % на вращение Солнца, которое, хотя и содержит подавляющую часть массы всей системы, вращается сравнительно медленно. Стало быть, необходимо объяснить, как могло возникнуть такое перераспределение момента количества движения в процессе образования системы звезда-планеты.

Сторонники случайного образования планет (Джинс, Шмидт, Литтлтон) обсуждали различные варианты столкновения (близкого прохождения) двух звезд или прохождения звезды через облако межзвездной пыли, в результате чего у звезды и могли бы образоваться планеты: либо из части ее вещества, вырвавшегося под действием гравитации второй звезды, либо из вещества облака. Однако, хотя и обоснованная расчетами, эта гипотеза является менее привлекательной, поскольку в этом случае лишь у одной из примерно 100000 звезд могла бы быть планетная система - уж слишком маловероятным является такое столкновение или даже прохождение.

По счастью, в результате наблюдения спектров, излучаемых краями звезд, вращающимися "к нам" или "от нас", было обнаружено, что для звезд вплоть до класса F5 главной последовательности характерно быстрое вращение, а звезды последующих классов вращаются примерно как наше Солнце. При этом, если мысленно "сбросить" все планеты Солнечной системы на Солнце, то из закона сохранения момента количества движения будет следовать, что Солнце должно после этого закрутиться в 50 раз быстрее - в точности так, как быстро вращающиеся звезды. Это наводит на мысль об образовании планетных систем в процессе эволюции звезд: более горячая и мощно излучающая звезда в какой-то момент сбрасывает в окружающее пространство часть своего вещества (это и будут впоследствии планеты), сама замедляет свое вращение и "сдвигается" вдоль главной последовательности в ту ее область, где находится и наше Солнце. Придумали и возможный механизм передачи момента количества движения. При отделении вещества от вращающейся звезды их общее магнитное поле тормозит вращение звезды, а диск отделяющегося вещества постепенно отодвигается от ее поверхности. Эти соображения привели к тому, что по современным оценкам примерно 20% звезд имеют планетные системы. Полагают, что важную роль играют и вспышки сверхновых, стимулирующие образование солнечных туманностей, а также излучение космических мазеров.

Вещество первичной солнечной туманности можно по точкам плавления или кипения разделить на три класса:

* породы (силикаты, окислы металлов, кремний, железо...), температуры плавления порядка тысяч градусов;

* жидкости и льды (химические соединения углерода, водорода, азота и кислорода), температуры кипения порядка сотен градусов;

* газы (H2, He, Ne, Ar).

В нашей солнечной системе вблизи Солнца расположены каменистые вещества, далее появляется лед, еще дальше замерзшие метан и аммиак. Различают четыре внутренние планеты (Меркурий, Венера, Земля, Марс) и четыре внешние (Юпитер, Сатурн, Уран, Нептун). За Нептуном находится еще одна маленькая планета - Плутон, который, по-видимому, раньше был луной Нептуна. Между внутренней и внешней группами планет находится пояс астероидов - обломков различного размера от метров до километров в поперечнике. Для внутренних планет характерны радиоактивные процессы, протекающие в недрах. Это приводит к расплавлению вещества в центре, причем тяжелое вещество - железо - оказывается в самом ядре. Газы, выделяющиеся в процессе эволюции планеты, могут быть удержаны ею, только если масса планеты достаточно велика. Так, Меркурий полностью, а Марс в большой степени не удержали свои атмосферы. Внешние же весьма крупные планеты обладают толстыми атмосферами, состоящими в основном изо льдов.

Меркурий представляет собой маленькую планету, величиной с нашу Луну. Он (как, впрочем, и другие планеты) движется вокруг Солнца по эллиптической орбите, причем большая полуось эллипса сама понемногу поворачивается. Забегая несколько вперед, хочется упомянуть, что только после появления теории относительности - одной из самых абстрактных теорий современной науки - была получена расчетная скорость вращения этой полуоси, совпадающая с наблюдаемой. Температура на поверхности Меркурия достигает 3400С.

Венера, долго бывшая надеждой писателей-фантастов на освоение землянами в недалеком будущем, обладает плотной атмосферой из углекислого газа, полной облаков. Эта атмосфера стремительно движется, и скорость ветра нарастает от 3,5 м/с на поверхности до 100м/с вдали от нее. Давление у поверхности достигает 90 атм., а температура 4750С (больше, чем на Меркурии!), что обусловлено парниковым эффектом.

Землю мы обсудим подробно в следующей главе.

Марс более миролюбив, чем Венера. Разреженная атмосфера из углекислого газа (давление около 0,01 атм) имеет температуры от 100 0С до -120 0С. У полюсов имеются полярные шапки из сухого льда. Биоэксперименты, выполненные в рамках программы "Викинг", не обнаружили жизни на Марсе, однако, полностью этот вопрос не закрыт.

Юпитер на 82% состоит из водорода и на 17% из гелия. Его диаметр более чем в 11 раз превосходит диаметр Земли, а сутки длятся всего 9час.55мин. Гигантская скорость вращения приводит к тому, что Юпитер сильно сплюснут у полюсов. По этой же причине зоны высокого давления перемежаются зонами низкого давления и расположены в широтном направлении (с Земли их видно как полосы). Хорошо заметно "красное пятно" - гигантская устойчивая область атмосферной турбулентности поперечником в три земных диаметра. Окраска вообще присуща атмосфере Юпитера, что говорит о протекании каких-то фотохимических реакций. Вдобавок имеются разряды атмосферного электричества, которые так сильны, что воспринимаются приемниками на Земле. Эти обстоятельства навели Юри и Миллера на мысль промоделировать условия, характерные для атмосферы Юпитера, в лаборатории. Газовая смесь из аммиака, метана, водяного пара и водорода была подвергнута действию искровых разрядов в течение сравнительно продолжительного времени. В результате в объеме были обнаружены следы аминокислот - компонент белковых соединений. Давление в недрах Юпитера достигает 3 млн.атм., что приводит к переходу водорода в металлическое состояние, а это, в свою очередь, обуславливает существование у Юпитера мощного магнитного поля. Четыре самых крупных спутника Юпитера видны с Земли в хороший бинокль.

Сатурн известен прежде всего своими кольцами. Когда Х.Гюйгенс в 1655 г. обнаружил планету с кольцами вокруг, он не поверил своим глазам и сообщение об этом, которое утвердило бы впоследствии его приоритет, зашифровал. Латинскую фразу, содержащую утверждение о существовании планеты с кольцами, он разбил на буквы и сначала выписал все "a", затем все "b" и т.д. Через два года, сконструировав более совершенную трубу и убедившись в правильности своих наблюдений, он привел свое приоритетное сообщение в нормальный вид. Кольца Сатурна представляют собой тонкий прерывистый слой обломков разного размера, вращающихся вокруг планеты. Наиболее крупным разрывом в кольце является щель Кассини. Ее существование обусловлено наличием спутника Сатурна Мимаса, период обращения которого ровно вдвое больше периода, который мог бы быть у тела, находящегося на расстоянии от Сатурна, соответствующем щели Кассини. Это означает, что тела, первоначально находившиеся там, где сейчас щель, периодически попадали в гравитационные условия, смещавшие их с той орбиты, и в конце концов этих тел там не осталось.

Уран тоже обладает системой колец, только довольно тонких. От других планет он отличается тем, что ось его вращения расположена практически в плоскости орбиты. Иными словами, полярные круги Урана практически совпадают с экватором.

Нептун известен своей историей открытия. Он расположен так далеко от Солнца, что обнаружить его просто в результате планомерных наблюдений неба не было возможности. Когда в движении Урана был обнаружен ряд необъяснимых странностей, некоторые ученые были склонны предположить, что так далеко от Солнца законы механики не действуют. Вот хороший пример ясного осознания роли концепции в естествознании. Однако Адамс и независимо Леверье, предположили, что на движение Урана оказывает влияние некоторая планета, которая пока не наблюдалась. Они вычислили ее предполагаемые координаты, основываясь на механике Ньютона, и Леверье написал письмо немецкому астроному Галле, в котором указал точные координаты предполагаемой планеты. В ту же ночь Галле обнаружил ее в указанном месте. Это и был Нептун.

Плутон был обнаружен схожим образом, но уже по движению Нептуна. Он гораздо меньше четырех внешних планет-гигантов и предположительно сошел с орбиты вокруг Нептуна, где он был спутником, в результате близкого пролета кометы и стал самостоятельной планетой.

Помимо планет к солнечной системе принадлежат также и кометы - небесные тела, периодически появляющиеся вблизи планет солнечной системы. Кометы двигаются по гораздо более вытянутым орбитам, чем планеты. Эти орбиты часто расположены не в плоскости орбит всех остальных планет, что указывает на то, что кометы были захвачены Солнцем из окружающего космического пространства, а не образовывались одновременно с планетами. Зачастую кометы состоят изо льда, который испаряется с поверхности при попадании в зону действия солнечной радиации, и комета приобретает хвост.

 

 

Глава 3

Земля

Атмосфера и ее своеобразие; недра; теория тектонических плит.

 

Наша планета, конечно же, является одним из основных объектов естественнонаучных концепций. Слоны и черепахи уступили место небесному телу, укрепленному в центре мироздания, затем это тело "отнесло" в сторону от центра, в котором утвердилось Солнце, затем и Солнце оказалось на периферии одной из множества галактик. На третьей по счету из девяти его планет - вот наше скромное место. Однако условия, складывавшиеся на этой планете в течение ее эволюции, оказались настолько своеобразными, что в результате на ее поверхности существуют те, кто делает попытки рационально осмыслить происходящее. Несмотря на самомнение человечества, самоуничтожительно преобразующего природу, плоды этой деятельности в глобальных масштабах все же малозаметны. Из 100000 фотоснимков поверхности Земли, сделанных из космоса с расстояния 1000 км так, как мог бы действовать автомат, исследующий планету на предмет обнаружения искусственных сооружений или объектов и фотографирующий случайные участки суши, лишь на одном можно обнаружить признак, указывающий на существование неестественного воздействия - это прямолинейная просека ЛЭП, проходящая через тайгу. Планета Земля огромна и живет по своим законам.

Атмосфера Земли существенно отличается от атмосфер всех планет. Первоначально она состояла из водорода, водяных паров, углекислого газа, метана, аммиака и небольших количеств гелия и неона. Атмосферы Венеры и Марса почти полностью состоят теперь из углекислого газа. На Земле же углекислый газ был удален, и это удаление шло по двум каналам. С одной стороны, химические реакции с горными породами в присутствии и при участии жидкой воды, а с другой - жизнедеятельность растений, поглощающих его и выделяющих кислород в процессе фотосинтеза. Пока кислорода не было в атмосфере Земли, ультрафиолетовое излучение Солнца достигало поверхности и способствовало протеканию химических реакций с участием углеводородов. Вода океана представляла тогда своеобразный бульон, подогреваемый вулканическим теплом, поступавшим из недр, в который поступали извергающиеся минералы и который интенсивно облучался ультрафиолетом. Полагают, что это и привело к появлению органических молекул и впоследствии к появлению жизни. Опыты, выполненные Кельвиным, Юри и Миллером (США) дали дополнительные основания для этой теории. Они пропускали электрические разряды через смесь метана, водорода, аммиака и воды в течение длительного времени. В результате возникли некоторые аминокислоты - вещества, являющиеся основой строения белка.

Современная атмосфера Земли почти полностью состоит из азота (около 80%) и такого активного элемента, как кислород (около 20%). Если бы на Земле вдруг полностью исчезло явление, которое мы называем жизнью, кислород бы очень быстро исчез из атмосферы, вступив в реакцию с другими веществами. Под воздействием излучения Солнца газы атмосферы флуоресцируют - светятся - и светятся преимущественно голубым цветом, что и обуславливает свечение и цвет неба Земли в дневное время. Соединение кислорода с водородом - вода - представляет собой сильнейший растворитель и покрывает 71% поверхности планеты. Одним из замечательных свойств воды является то, что в отличие от большинства известных веществ ее твердая фаза - лед - имеет при температуре замерзания плотность меньшую, чем жидкая вода. Поэтому замерзание водоемов начинается сверху, где зимой температура атмосферы понижается, а не со дна, и в глубине сохраняются условия, благоприятные для жизни. Это обстоятельство также внесло свой вклад в возникновение биопроцессов, так существенно сказавшихся в том числе и на атмосфере Земли.

Строение самой планеты - ее твердой части - по современным представлениям выглядит следующим образом. В центре находится ядро, состоящее из тяжелого вещества - железа. Сердцевина его твердая и имеет радиус порядка 1300 км, затем идет жидкий слой толщиной порядка 2200 км. Несмотря на то, что температура в центре, вероятно, достигает 42000С, железо там находится в твердом состоянии из-за огромного давления, а его плотность более чем в 5 раз превышает плотность земной коры. Движение токопроводящего материала в жидком слое ядра ответственно за создание магнитного поля Земли. Между ядром и поверхностными слоями находится мантия - обогащенные железом породы. В этом слое давление высокое, но температура недостаточно высока для того, чтобы вещество расплавилось, поэтому мантия - чрезвычайно вязкая, однако, ее движения все же возможны так же, как движение (течение) ледников. На самом верху - тоненький слой твердой земной коры. Под океанами кора имеет толщину всего несколько километров, под континентами - порядка 30 км, под горными массивами - до 70 км. Эти цифры совершенно ничтожны по сравнению с радиусом Земли, составляющим 6370 км. Недра Земли так же недоступны для непосредственного изучения, как галактики. Самая глубокая скважина, бурение которой продолжается и сейчас на Кольском полуострове, достигает лишь двенадцати километров под поверхностью Земли. И строить догадки о глубинном строении недр мы можем, наблюдая землетрясения и выполняя сейсмические исследования. Последние основаны на том, что звуковые волны от взрывов распространяются с различной скоростью в породах с различной плотностью и отражаются от границ разделов слоев, имеющих разную плотность. Так, мантия имеет плотность 3,3 г/см3, континентальная кора 2,77 г/см3, океаническая кора 2,9 г/см3. Устанавливая приемники таких волн и измеряя времена прихода сигналов в различных точках поверхности, мы можем судить о внутреннем устройстве коры и даже более глубоких слоев. Вещество коры распределяется на три класса пород, имеющих различное происхождение:

* изверженные (или магматические) породы появились на поверхности в результате деятельности вулканов. Примером является гранит;

* осадочные породы появились в процессе осаждения на дно океанов, причем океаны не всегда занимали то же положение, что и сейчас, и осадочые породы могут встречаться вдали от морских берегов. Примером является мел;

* метаморфические породы на протяжении геологической истории Земли подверглись воздействию высоких температур и давлений и изменили свою кристаллическую структуру. Например, известняк превращается в мрамор.

Геологическую историю Земли можно проиллюстрировать на таком примере. Пусть каждый миллион лет соответствует одной секунде условного кинофильма. Тогда продолжительность всего фильма займет 1 час 20 мин. В течение первых трех минут происходило формирование Земли из протопланеты. Затем наступает так называемый архейский период, в течение которого образовывалась кора, океаны, атмосфера. Этот период будет длиться примерно 40 минут, причем в районе тридцатой минуты на Земле зародится жизнь, хотя пока довольно примитивная - водоросли, простейшие. Начало следующему - протерозойскому периоду, который продлится около "получаса", - положило возникновение зон повышенной проницаемости земной коры, которые образовали системы разломов. Возможно, это было одной из причин выхода растений на сушу. Тогда же возникают почти все типы животных, за исключением позвоночных, - черви, моллюски. И, наконец, в последние 10 минут (кайнозойский период) происходит быстрый расцвет фауны, связанный с тем, что у животных выработался прочный скелет или твердая внешняя оболочка. Две последних секунды этого фильма будут содержать эпохи великих оледенений и появление человека, а вся история нашей цивилизации уложится в 1/200 часть последней секунды. Узнать все это позволяет анализ палеонтологических данных: изучение окаменевших останков животных в осадочных породах и радиоуглеродный метод датировки.

В последние 30 лет всеобщее признание получила концепция или теория тектонических плит земной коры, согласно которой в течение всей кайнозойской эры материки перемещались по поверхности планеты. Действительно, рассмотрев карту мира как разрезную картинку, можно заметить, что в целом ряде случаев - Южная Америка и Африка, Антарктида, Австралия и Индостан - границы материков удивительным образом хорошо совмещаются. Это любопытное обстоятельство было отмечено довольно давно, однако только в 1912 году А.Вегенер сделал обоснованное предположение о существовании праконтинентов, их возможном расколе и дальнейшем движении образовавшихся континентов по поверхности Земли. Но как же может двигаться материк? Понадобилось более полувека, чтобы эта теория получила признание специалистов, объяснявших особенности строения коры на основе предыдущей парадигмы, в которой основная роль отводилась вертикальным перемещениям пород и их слоев.

Обсудим вкратце основные аргументы, приводящие к заключению о движении материков. Если считать, что некоторые нынешние материки когда-то составляли одно целое, то можно сделать целый ряд выводов, допускающих проверку. Наиболее достоверным способом датировки и географической привязки пород является метод "руководящих ископаемых" - анализ останков окаменевшей фауны. Если один и тот же вид животных (например, трилобиты) встречается в различных точках поверхности, то можно полагать, что соответствующие осадочноые породы образовались в одно и то же время. В различных регионах наибольшее распространение получали различные виды руководящих ископаемых. Оказалось, что в соответствующих точках совмещенных границ материков имеются одинаковые ископаемые, имеющие одинаковый возраст. Немедленным практическим выводом был поиск одинаковых полезных ископаемых в соответствующих точках. И в Южной Америке нашли алмазы, соответствующие Африканским месторождениям.

Другим обстоятельством, до выявления которого Вегенер не дожил, были особенности намагниченности горных пород. Известно, что при повышении температуры до определенного значения (температуры Кюри) вещество теряет свои магнитные свойства, а при понижении температуры вновь намагничивается, если вокруг имеется магнитное поле. Когда раскаленное вещество магмы изливается на поверхность и начинает остывать, его возникающая намагниченность определяется магнитным полем Земли и связана с направлением на магнитный полюс. При анализе намагниченности горных пород было установлено, что направление на магнитный полюс существенно менялось на протяжении истории Земли. Это позволяет вычертить траекторию дрейфа магнитного полюса по поверхности. Получается некоторая кривая, один из концов которой совпадает с современным магнитным полюсом. Построив такую кривую сначала по геологическим данным Европы, а затем Северной Америки, можно обнаружить, что, с одной стороны, они не совпадают, а с другой - их формы чрезвычайно схожи. И если допустить, что Лабрадор, Северная Америка и Европа некогда составляли единое целое, причем смыкались по прослеживаемым линиям, близким к береговым, то полученные траектории дрейфа магнитного полюса практически совпадут (рис.4).

В 50-е годы был изучен так называемый Атлантический рифт - узкий горный хребет на дне Атлантического океана, протянувшийся с севера на юг от Арктики до Антарктиды. Его осевая линия представляет собой провал, по его сторонам имеются крутые возвышения, части которых иногда достигают поверхности океана и являются островами. Рифт является зоной повышенной вулканической активности. Исследования намагниченности горных пород вдоль склонов хребта обнаружило любопытную особенность: вдоль хребта идут полосы шириной примерно 30 км (так называемые полосовые аномалии), в которых намагниченности поочередно направлены в противоположные стороны. Это указывает на то, что магнитные полюса Земли на протяжении ее истории неоднократно менялись местами. С другой стороны, это означает, что в результате вулканической деятельности кора вдоль рифта раздвигалась. Точные спутниковые измерения показывают, что Северная Атлантика раздвигается примерно на 1 см в год. Аналогичный регион в восточной части Тихого океана раздвигается на 5 см в год. Где же тогда сдвигаются участки коры и куда деваются, сдвинувшись? Один ответ очевиден: горные хребты на суше могут представлять собой результат столкновения плит. Но есть и другой. Помимо рифтовых возвышений на океанском дне существуют и впадины. Как правило, они расположены вдоль побережья. Самой глубокой и самой известной является Марианская впадина в юго-западной части Тихого океана. Если нанести на карту всю систему таких впадин и отметить зоны сейсмической активности, то их расположения совпадут. При этом оказывается, что эпицентры землетрясений располагаются на глубинах от нескольких километров до нескольких десятков километров. Эти значения соответствуют значениям толщины коры под океаном и материком. Можно предположить, что раздвигающаяся океаническая кора "задвигается" под континентальную. При этом образуются понижения поверхности (впадины), а кроме того при взаимных перемещениях возникают значительные механические напряжения, сброс которых (взаимное проскальзывание плит) и приводит к землетрясениям. Таким образом, подводные желоба имеют геологическое значение.

Реконструкция очертаний древних материков и анализ геофизических данных позволяют восстановить следующую картину. В середине кайнозоя (то есть примерно 300 млн. лет назад) на Земле существовало два материка: Гондвана и Лавразия. Гондвана состояла из сомкнутых Южной Америки, Африки, Индостана, Австралии и Антарктиды. Лавразия состояла из Северной Америки, Лабрадора и Европы. Между Гондваной и Лавразией находился океан Тетис, соединяющий современные Атлантический и Тихий океаны. Он сужался по направлению к западу, так что эти материки смыкались. Остатками Тетиса являются Средиземное и Черное моря. Существование в прошлом сухопутных путей между регионами, которые теперь принадлежат разным континентам, привело к распространению одинаковых животных на территориях, впоследствии далеко разделенных водными пространствами. При этом на вновь образующихся континентах эволюция шла по-разному. Так, травоядные сумчатые, первоначально заселявшие также и исходно смежные с Австралией территории, в самой Австралии уцелели, а в Азии были уничтожены новыми - плацентарными млекопитающими, бывшими в основном хищниками. Однако о том, что в давние времена сумчатые проживали там в изобилии, можно догадаться по останкам костей. Известен также вид гигантских морских черепах, проживающий на побережье Южной Америки, самки которого откладывают яйца на острове, расположенном в 2000 км от берега. Что заставляет их проделывать столь дальний путь, неясно, если не предположить, что в давние времена (а род этих черепах насчитывает 90 млн. лет) остров был неподалеку от места проживания черепах, а затем очень медленно отодвигался от суши в результате материкового дрейфа. Так медленно, что черепахи не могли среагировать на этот процесс.

Имеются указания и на то, что помимо раздвиганий и разворотов Гондвана и Лавразия смещались и в целом. Анализ остатков флоры в геологических отложениях показывает, что области суши, которые теперь находятся в экваториальных областях, раньше были в полярных, а экватор пересекал Лавразию. Если материки не двигались, то единственным объяснением, которое могло бы быть ответственным за такое изменение климата, является изменение наклона оси вращения Земли. Однако если бы по каким-то причинам это случилось, то последствия были бы катастрофическими для всей планеты вплоть до распада ее на части. Примерно 200-160 млн. лет назад активизация вулканической деятельности привела к образованию разломов и дроблению протоматериков. Двигающиеся на север Африка и Индия сомкнулись с двигающимися на юг Европой и Азией, Тетис исчез, и возникла Альпийско-Кавказско-Гималайская гряда молодых гор. Из географически близких нам примеров можно упомянуть расширение Кандалакшского залива, в результате чего Кольский полуостров постепенно отъезжает на север.

Что же является движущей силой таких циклопических перемещений? Как показывают данные термодинамических и сейсмических измерений, внутри мантии существуют вариации как плотности, так и температуры. Это означает, что возможна циркуляция вещества, когда горячий и менее плотный материал поднимается вверх, растекается, охлаждается и, став более плотным, опускается в глубину. То, что мантия состоит из твердого вещества, не должно смущать, поскольку имеется наглядный пример - текущие ледники. Оказывается, достаточно очень небольшой разности температур, чтобы материал пришел в движение, которое, конечно, является очень медленным. Такая циркуляция вполне может привести к тем подвижкам, о которых шла речь. Правда, необходимо отметить, что для осуществления такого процесса необходима однородная мантия, т.е. состоящая из вещества, состав которого не меняется с глубиной, не становится более плотным. Вынос вещества наружу должен приводить либо к расширению Земли, либо к образованию складок, либо компенсироваться погружением части коры вглубь. Подсчет суточных ростовых колец на кораллах (аналогичных годовым кольцам на деревьях) показывает, что примерно 400 млн. лет назад в году было 400 суток, то есть Земля вращалась быстрее, то есть ее радиус был меньше (момент количества движения сохраняется). Однако недостаточно меньше, чтобы соответствовать расчетному количеству материала, выведенного к настоящему времени наружу из мантии. Складки действительно есть - горные хребты, состоящие из сжатых пород. Однако рассчитанное суммарное сжатие современных гор не соответствует и малой доле того материала, который добавился к коре из верхней мантии за последние 25 млн. лет. А вот погружение коры действительно имеет место, как о том было сказано про глубоководные желоба.

Теория тектонических плит существенно изменила мировоззрение людей и их представление об эволюции нашей планеты. Она имеет также и практические аспекты. Мы стали лучше понимать природу землетрясений и получили возможность улучшить их прогнозирование. Зная линии разломов земной коры, вдоль которых происходит смещение плит, можно наблюдать за этим смещением, и, если оно замедляется или останавливается, это указывает на вероятность скорого сейсмического толчка. Более того, существуют проекты бурения скважин вдоль разломов, куда в качестве смазки будет закачиваться вода, что приведет к снижению амплитуды толчков. Кроме того, на основе теории тектонических плит стало более понятным распределение полезных ископаемых и источников сырья.

 

 

Глава 4

Эволюция

Живое и неживое; дарвинизм и его особенности; неодарвинизм; автоэволюция формы и функции; телеология эволюции; генетика.

 

"Homo homini lupus est."

"Сейте разумное, доброе, вечное..."

 

Говоря об эволюции, обычно подразумевают биологическую эволюцию, то есть постепенное изменение живых существ. Но что такое живое? Это еще одно основополагающее понятие, над которым задумываются немногим чаще, чем над тем, что такое пространство и время. Участие в обмене веществом и энергией с окружающей средой и способность к самовоспроизведению не являются исчерпывающими признаками. Нетрудно вообразить робота, периодически меняющего батарейки, задача которого состоит в сборке себе подобных. Другой подход к определению живого апеллирует к химии: жизнь - это способ существования белковых тел. С этим невозможно спорить, как и с любым логико-позитивистским определением. Однако общественное сознание усилиями фантастов давно готово к встрече с небелковой жизнью (и скорее удивится, не обнаружив ее). Это означает, что понятие "жизнь" шире, чем его конкретное проявление.

Оставляя в стороне такие интригующие понятия, как "сознание", "разум", "душа", применяемые к человеку, постараемся понять для начала, чем отличается живой жук от заводного, не выходя за рамки нашего предмета. Достаточно сложный биологический объект, каковым является, например, жук, состоит из клеток. Они имеют собственное устройство и выполняют определенные функции. Это же можно сказать и про отдельные детали сложной машины. Однако сборка клеток и машин осуществляется на различных принципах. Клетка растет постепенно, и в нее включаются только атомы и молекулы, соответствующие физико-химическим свойствам уже накопленных элементов, представляющих собой зачаток самой клетки. В машине же все решает конечная - внешняя - функция, для выполнения которой и строится машина. В зависимости от этой функции и выбирается материал и устройство вновь присоединяемых элементов. Но это не все. Рибосома, например, состоит из РНК трех типов и 55-и белков. Можно создать условия, при которых произойдет их разделение, и их можно будет выделить (и распознать) в растворе. Однако если теперь создать другие - благоприятные - условия, то они снова соберутся в рибосому. С развалившимися (например, от продолжительной вибрации) часами так не произойдет ни при каких новых условиях. Наконец, машина работает, используя разность уровней энергии. Клетка же способна накапливать энергию, а затем канализировать ее, то есть использовать строго определенным образом.

Пример с часами чрезвычайно показателен, поскольку иллюстрирует самую общую из известных физических закономерностей: упорядоченность физических систем не возрастает. Это в том числе означает, что не существует чисто механических систем, в которых сохраняется полная механическая энергия, всегда имеются ее потери (например, в тепло), которые постепенно гасят и в конце концов прекращают тот или иной упорядоченный процесс. Тогда можно сказать, что материю можно считать живой, если она продолжает "делать что-либо" (двигаться, участвовать в обмене с окружающей средой и т.д.) в течение более длительного отрезка времени, чем по нашим понятиям могла бы делать неживая материя в подобных условиях. Пародоксальным образом можно сказать, что живая материя строго подчиняется законам механики, вопреки термодинамике. Кроме того, живым образованиям присуще их самоусложнение с течением времени.

Как мы полагаем в настоящее время, основой живой материи являются молекулы ДНК. Но живы ли они - эти химические соединения, набор атомов, каждый из которых "подчиняется" установленным для него законам неживой природы?

Посмотрим на эволюцию с более традиционно-биологической точки зрения. Теория Дарвина является одной из наиболее известных концепций биологической эволюции на нашей планете. Несмотря на то, что она основана на обширном эмпирическом материале, собранном и осмысленном Ч.Дарвиным и его предшественниками и последователями, происхождение ее не является, строго говоря, естественнонаучным. Книга Дарвина называется "Происхождение видов", и основная ее идея состоит в использовании концепции естественного отбора для объяснения многообразия видов живых существ, обитающих на Земле. Однако уже сам Дарвин указывал, что эта концепция была взята им из социологии, где она присутствовала в так называемой доктрине Мальтуса. Борьба за существование и выживание сильнейшего в сообществах людей послужила моделью для описания биологических трансформаций в природе. По-видимому, внутривидовые изменения действительно могут происходить подобным образом. Однако уже "спуск" на следующий уровень, то есть род, вызывает вопросы. Что же касается распространения теории естественного отбора еще более глубоко в классификацию живых существ (классы, типы и т.д.), то она представляется мало удовлетворительной. Кроме того, можно перечислить некоторые факты эволюции, которые в рамках теории Дарвина представляются совершенно загадочными. Так, например,

* изменение зубов и копыт у лошадей в процессе эволюции указывает на то, что у эволюции может быть определенное направление, никак не обусловленное борьбой за существование;

* многократное возникновение в процессе эволюции одного и того же явления (биолюминисценция у различных классов организмов, одни и те же последовательности ДНК обнаруживаются в одном и том же месте белковых молекул у разных видов) указывает на то, что они обусловлены скорее внутренними, чем внешними причинами;

* формирование определенных структур может происходить до того, как они стали необходимы (так называемая преадаптация). Так, перо возникло до того, как сформировались птицы, а возникновение глаз нельзя объяснить отбором;

* существуют организмы (и гены), которые почти не эволюционируют (акула, опоссум, таракан).

Не находит объяснения и часто задаваемый вопрос, почему в настоящее время не происходит превращения обезьяны в человека. Обычный ответ на него, состоящий в том, что обезьяны, человекообразные обезьяны и люди есть оконечные ветви одного ствола, оставляет место для дальнейших вопросов о том, что явилось причиной такого расхождения. Другим примером является завоевание суши позвоночными. Обычно его представляют как весьма продолжительный процесс, явившийся результатом борьбы за выживание: произошло вытеснение менее приспособленных к водной среде видов, и они постепенно приспособились к жизни на суше. Однако некоторые обстоятельства жизнедеятельности определенных видов животных позволяют, по крайней мере, усомниться в этом. Превращение головастика в лягушку происходит без всякого отбора, а индуцируется синтезируемым в его организме химическим соединением тироксином, концентрация которого на определенном этапе повышается примерно в десять раз. Если у головастика удалить щитовидную железу, то он благополучно живет и развивается в водной форме. Если же впрыснуть ему в кровь тиреоидный гормон, то он превратится в лягушку. Известны и другие примеры: земноводное животное аксолотль в своих фазах настолько различается, что долгое время считалось, что это различные даже не виды, а рода. Отсутствие воды стимулирует выделение тироксина в организме аксолотля, и наступает разительная метаморфоза. Могло показаться (и казалось), что для таких изменений необходимы тысячи мутаций и отбор, а оказалось, что достаточно просто химического сигнала. Никаких изменений в генетической конструкции при этом не происходит. И это означает, что глубокие структурные и функциональные превращения могут происходить и без таких изменений. Любопытно, что и процесс рождения человека сходен с трансформацией у амфибий.

Теория естественного отбора предполагает как бы воздействие вида на род, тип и так далее, в то время как более последовательным выглядит эволюционный процесс, протекающий от типа к виду.

Во времена Дарвина говорить о молекулярной биологии было еще рано. Однако, идеи борьбы и выживания с учетом современных представлений о молекулярной основе живых существ находят свое отражение в различных неодарвинистских теориях. Проводятся следующие рассуждения. В первичном "бульоне", образовавшемся на поверхности планеты, под воздействием внешних факторов: тепла, излучения, электрических разрядов возникают различные молекулы (в том числе и органические). Эти молекулы могут существовать какое-то время, распадаться, взаимодействовать с другими молекулами, образуя с ними соединения. В результате всех этих процессов возникает своеобразный тип молекул - так называемых репликаторов, - которые способны создавать и отщеплять собственные копии, составляемые из "обломков" химических соединений, содержащихся в окружающей среде ("бульоне"). Понятно, что с течением времени число таких молекул будет все более возрастать за счет этого копирования. Предположим, что свойством реплицироваться обладает несколько различных молекул. Кто же уцелеет? Во-первых, долгоживущие. Чем дольше молекула сохраняет стабильность, тем больше копий она сумеет воспроизвести. Во-вторых, размножающиеся быстро. В-третьих, размножающиеся точно, с наименьшими отклонениями от исходных. И вот весь бульон съеден. В нем не осталось обломков, пригодных для использования в репликации, они поступают в него только с разрушением уже существующих молекул. Если по каким-то причинам у одного из видов репликаторов возникает механизм расщепления других молекул, то его численность возрастает. С другой стороны, вид репликаторов, обладающий по каким-то причинам механизмом защиты от такого воздействия - протооболочкой, также уцелевает в процессе такой эволюции. По мере усложнения "атакующих" усложняются и "защитные" механизмы. При этом необязательно говорить о целенаправленном усложнении, просто по прошествии достаточно большого промежутка времени останутся лишь те молекулы, в которых эти механизмы так или иначе возникли. Путь от протооболчки ведет к протоклетке. Ее внутренняя часть содержит "исходную" реплицирующуюся молекулу. Это модель гена. И все дальнейшее есть лишь создание все более совершенных "машин" для выживания гена. Те сложные, часто многоклеточные, многофункциональные существа, которые мы теперь называем живыми (в том числе и человек), есть наиболее приспособившиеся потомки молекул-репликаторов.

Обсудим еще одну концепцию, известную как автоэволюция формы и функции. Ее возникновение связано со стремлением найти закономерности эволюции как живой, так и неживой природы, найти ее движущие силы. В ней выделяются четыре уровня рассмотрения, связанные между собой общими закономерностями.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 558; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.