КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Осаждение частиц под действием силы тяжести
Внешняя задача гидродинамики Законы движения твердых тел в жидкости (или обтекание твердого тела жидкостью) имеют важное значение для расчета многих аппаратов, применяющихся в технологии строительных материалов. Знание этих законов позволяет не только более полно представить физическую сущность явлений, происходящих, например, при транспортировании бетонных смесей по трубопроводам, перемешивание различных масс, движение частиц при сушке и обжиге во взвешенном состоянии, но и более правильно и экономично сконструировать технологические аппараты, применяемые для этих целей. При движении тела в жидкости (или при обтекании неподвижного тела потоком жидкости) возникают сопротивления, для преодоления которых и обеспечения равномерного движения тела должна быть затрачена определенная энергия. Возникающее сопротивление зависит, главным образом, от режима движения жидкости и формы тела. При ламинарном режиме, имеющем место при небольших скоростях и малых размерах тел или при высокой вязкости жидкости, тело окружено пограничым слоем жидкости и плавно обтекается потоком (рис. 6.1,а). Рис. 6.1. Движение твердого тела в жидкости: а – ламинарный поток; б – турбулентный поток Потеря энергии в таких условиях связана в основномс преодолением сопротивления трения. С развитием турбулентности потока (например, с увеличением скорости движения тела) все большую роль начинают играть силы инерции. Под действием этих сил пограничный слой отрывается от поверхности тела, что привовдит к понижению давления за движущимся телом в непосредственной близости от него и к образованию беспорядочных местных завихрений в данном пространстве (рис. 6.1,б). При этом разность давлений жидкости на переднюю (лобовую) поверхность тела, встречающую обтекающий поток, и на его заднюю (кормовую) поверхность все больше превышает разность давлений, возникающую при ламинарном режиме движения. Начиная с некоторого значения критерия Рейнольдса, роль лобового сопротивления становится преобладающей, а сопротивлением трения можно практически пренебречь. В данном случае наступает автомодельный (по отношению к критерию Рейнольдса) режим движения. Сопротивления давления и трения в общем случае существуют одновременно, и полное сопротивление, которое возникает при относительном движении тела и жидкости, представляет собой сумму этих сопротивлений: , (6.1) где Рдавл – сопротивление давления; Ртр – сопротивление трения. Соотношение между этими слагаемыми различно в разных случаях. Полное сопротивление определяется по формуле Ньютона: , (6.2) где C – коэффициент сопротивления среды; S – площадь проекции тела на плоскость, перпендикулярную направлению его движения; w – скорость движения; r - плотность жидкости. При движении тел, отличающихся по форме от шара, коэффициент сопротивления среды зависит от критерия Рейнольдса (от режима движения) и от фактора формы Ф, т.е. C = f(Re, Ф). Фактор формы определяется по соотношению: , (6.3) где Sш – поверхность шара, имеющего тот же объем, что и рассматриваемое тело; S – поверхность рассматриваемого тела. Законы движения двухфазных жидкостей (жидкость плюс взвесь твердых частиц) имеет большое значение в инженерной практике. В промышленности строительных материалов взвесенесущие потоки применяют при пневмотранспорте цемента, гидротранспорте бетонных смесей, сушке и обжиге сыпучих материалов во взвешенном состоянии др. технологических процессах. Основные вопросы, интересующие инженера, - определение необходимой скорости транспортирования и потерь давления. Особенности взвесенесущих потоков в значительной степени определяются характером обтекания твердых частиц потоком жидкости или газа. Пусть в вертикальной трубе диаметром D (рис.6.2) движется сферическая частица диаметром d (D >> d). Поток среды направлен снизу вверх. На частицу действует сила давления P, направленная снизу вверх, и сила тяжести G. Рис. 6.2. Схема сил, действующих на частицу, находящуюся в восходящем потоке
В зависимости от соотношения этих сил частица может подниматься, опускаться или оставаться неподвижной. Условие равновесия будет наблюдаться при P =G. Это случай витания частицы. Сила тяжести сферической частицы в жидкой среде определяется соотношением: , (6.4) где rт – плотность частицы; rж – плотность жидкости.
Уравнение равновесия частицы имеет вид: , (6.5) откуда скорость витания частицы (скорость потока, при которой частица будет находиться в равновесии): . (6.6) В случае воздушных потоков с достаточной для инженерных расчетов точностью можно принять (rт - rж)» rт, т.к. плотность воздуха очень мала по сравнению с плотностью твердого тела. В этом случае скорость витания частицы определяется по формуле: (6.7) В реальных взвесенесущих потоках необходимо в эти формулы внести поправки для учета влияния стенок трубы и соседних частиц: (6.8) где Ест – коэффициент стеснения, зависящий от соотношения d/D и объемной концентрации частиц в потоке. Таким образом, · Тело в потоке жидкости будет находиться в состоянии равновесия (витать), если скорость витания равна скорости потока жидкости (wвит = w); · Тело будет двигаться по направлению движения жидкости, если скорость жидкости больше скорости витания частицы (wвит < w); · Тело будет осаждаться под действием силы тяжести, если скорость витания частицы больше скорости потока (wвит > w). В системах пневмотранспорта для надежного перемещения материалов скорость движения воздуха обычно в 1,5-2 раза превышает скорость витания. Максимальный размер частиц, осаждение которых происходит по закону Стокса, можно определить из соотношения: , (6.9) где h - вязкость жидкости.
При Re £ 10-4 и когда d становится соизмеримым с длиной среднего свободного пробега молекул l, на скорость осаждения очень мелких частиц начинает влиять тепловое движение молекул среды, приводящее к отклонению от закона Стокса. В этом случае в формуле (9) используется поправочный коэффициент K = f(l/d). Практика показывает, что при d» 0,1 мкм пыль, находящаяся в воздухе, не осаждается, а наблюдается броуновское движение частиц.
Дата добавления: 2014-01-07; Просмотров: 2006; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |