КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Минимальные покрытия множеств функциональных зависимостей
Попытаемся теперь выяснить, какова роль F -зависимостей в реляционных базах данных. Как показали исследования, класс F -зависимостей оказывает существенное влияние на построение согласованных схем реляционных баз данных, определяет механизмы согласованности данных и целостности баз данных. Одной из основных целей создания базы данных является сохранение всех данных и взаимосвязей между ними из предметной области в вычислительной среде. Табличное представление отношений в реляционных базах данных позволяет выдвинуть следующую гипотезу хранения данных - каждой ФЗ по отношению. Другой целью создания базы данных является надежность и целостность сохраняемых данных. Можно предположить, что табличное представление породит ряд проблем, связанных с восстанавливаемостью данных, и вступит в противоречие с требованием производительности базы данных. Поэтому меньшее число F-зависимостей означает меньший объем использования памяти компьютера и меньшее число проверок при операциях модификации. В начале проектирования реляционных баз данных всегда возникает задача представления множеств F -зависимостей. Чем меньшим числом отношений их можно представить, тем лучше. Формализация решения этой задачи строится на понятии покрытия ФЗ. Построение покрытий множеств ФЗ является четвертой (4) конструктивной идеей в теории проектирования реляционных баз данных. Введем ряд определений. Определение 11. Два множества F-зависимостей F и G над схемой r отношения R эквивалентны, если их замыкания совпадают, т.е. F+ = G+. Эквивалентность двух множеств ФЗ F и G устанавливается следующим образом: для каждой ФЗ из F проверяется ее принадлежность G+; для этого вычисляется Y+; затем проверяется вложение Z в Y+; если каждая зависимость F принадлежит G+, то каждая зависимость в F+ принадлежит G+; далее повторяем процедуру для G по отношению к F. Следствием введения понятия эквивалентности является следующий важный факт: каждое множество ФЗ покрывается некоторым множеством ФЗ, в которых ни одна из правых частей не имеет более одного атрибута (правила декомпозиции и объединения). Таким образом, существует набор эквивалентных схем для каждой исходной схемы отношений реляционной базы данных. Теория проектирования реляционных баз данных дает возможность построения более коротких представлений ФЗ. Для рассмотрения таких процедур введем понятия неизбыточных ФЗ и минимального покрытия множеств ФЗ. Определение 12. Множество F -зависимостей F неизбыточно, если у него нет собственного подмножества, эквивалентного ему самому. Определение 13. Множество F -зависимостей F минимально, если оно содержит не больше F-зависимостей, чем любое эквивалентное ему множество. Минимальное покрытие (МП) не может содержать избыточных зависимостей. Понятие МП F можно детализировать следующим образом:
Доказано, что для каждого множества ФЗ F существует эквивалентное ему минимальное покрытие. Для заданного F может существовать несколько минимальных покрытий. Ниже приведены общие алгоритмы проверки избыточности и построения минимальных покрытий. Алгоритмы проверки избыточности Алгоритм REDUNDANT (F)input: Множество Foutput: True, если F избыточно 1. temp = false for any X ->Y < F do if MEMBER (F - { X -> Y }, X -> Y) then temp = True Return (temp) Алгоритм NONREDUN (G)input: Множество ФЗ Goutput: Неизбыточное покрытие G 1. F = G for any X ->Y > G do if MEMBER (F - { X -> Y }, X -> Y) then F = F - { X -> Y } Return (F)Алгоритмы построения минимального покрытия Примеры. Построение минимального покрытия ФЗ Пусть F = {AB -> C, C -> A, BC -> D, ACD -> B, D -> EG, BE -> C, CG -> BD, CE -> AG}. Расщепив правые части с помощью правила декомпозиции, получим AB -> C, C -> A, BC -> D, ACD -> B, D -> E, D -> G, BE -> C, CG -> B, CG -> D, CE -> A, CE -> G}. CE -> A - избыточна, так как следует из C -> A. CG -> B - избыточна, так как следует из CG -> D, C -> A, ACD -> B. Больше избыточных ФЗ нет. ACD -> B может быть замещена CD -> В, так как C -> A. Первое МП: AB -> C, C -> A, BC -> D, CD -> B, D -> E, D -> G, BE -> C, CG -> D, CE -> G. Построим второе МП, исключив CE -> A, CG -> D, AC -> DB: AB -> C, C -> A, BC -> D, D -> E, D -> G, BE -> C, CG ->В, CE -> G Так же как и для F -зависимостей, можно определить правила вывода для многозначных MV -зависимостей, и определить их взаимоотношения с F -зависимостями, а далее показать совместную полноту правил вывода F - и MV -зависимостей. Правила вывода для MV-зависимостей:
Совместные правила вывода для F - и MV -зависимостей:
Справедливо следующее утверждение: система правил вывода F1-F3, MV1-MV3, FMV1 и FMV2 является надежной и полной. Правила декомпозиции и объединения MV -зависимостей позволяют сформулировать следующее утверждение. Пусть U - множество атрибутов, тогда можно построить разбиение U-X на множества , такое, что при имеет место МФЗ , если только Z является объединением некоторого числа Yi. Набор множеств Y1, Y2,..., Yk называется базисом Х F - и MV -зависимостей. Каждое Yi может состоять из одного атрибута. Пусть D - множество F - и MV -зависимостей, тогда, так же как и для F-зависимостей, замыкание D+ множества D может быть логически выведено по аксиомам F1-F3, MV1-MV3, FMV1 и FMV2. Однако этот процесс может потребовать времени, пропорционального eL, где L - число ФЗ в D. На практике часто требуется только знать, следует ли из D конкретная ФЗ или . Этого достаточно, чтобы исключить избыточные ФЗ. Для того чтобы определить, имеет ли место MV -зависимость , достаточно построить базис Х зависимостей и посмотреть, является ли Z - X объединением каких-либо его множеств. Для вычисления базиса зависимостей Х относительно D достаточно найти базис относительно множества МФЗ М, где М состоит из а) всех МФЗ из D и б) множества МФЗ для каждой ФЗ в D, где . Ниже приведен алгоритм вычисления базиса Х ФЗ относительно M. Алгоритм вычисления базиса функциональных зависимостей input: Множество MV-зависимостей М на множестве атрибутов output: Базис Х относительно М.
Теория функциональных зависимостей на отношениях реляционной базы данных представляет собой математический фундамент, на котором строится проектирование реляционных баз данных. Подытожим сведения о функциональных зависимостях, полученных в данном учебном элементе.
Дата добавления: 2014-01-07; Просмотров: 2379; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |