Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Атмосфере и ионосфере

Особенности распространения радиоволн в неоднородной

ЛЕКЦИЯ № 10

Передача радиосигналов между пунктами, расположенными ни земной поверхности, осуществляется с применением разных видов распространения радиоволн, из которых наиболее характерны следующие (рисунок 10.1):

- вдоль земной поверхности;

- с излучением в верхние слои атмосферы и из них обратно к поверхности Земли;

- с приемом с Земли и обратной передачей на Землю посредством

Космических ретрансляторов.

 

Распространение радиоволн вдоль земной поверхности существенно

зависит от её рельефа и физических свойств. Атмосфера также оказывает

влияние на передачу и прием сигналов земными радиостанциями, зависящее

от целого ряда природных явлений. Эти зависимости проявляются, в разной

форме и степени при разных длинах волн. Поскольку радиоволны имеют ту же физическую природу, как и свет, распространение их подчинено общим для этих излучений закономерностям:

- в однородной среде волны распространяются прямолинейно;

- в средах с неоднородными свойствами происходит рефракция, т. е. отклонение траектории от прямой;

- на границах однородных сред с разными свойствами наблюдаются преломление и отражение волн;

- если на пути распространения встречаются препятствия, непроницаемые для волн, то наблюдается дифракция: огибание препятствий; - в средах с пониженной прозрачностью, например из-за содержания в них частиц пыли или воды, происходит частичное поглощение волн. Основными свойствами земной поверхности, оказывающими влияние на распространение над ней электромагнитных волн, помимо её рельефа, являются её электрические параметры: электропроводность и диэлектрическая проницаемость. Влияние неровностей поверхности оказывается значительным, если их размеры сравнимы с длиной волны и превышают её. Например, горы влияют на распространение волн практически всех диапазонов, используемых в радиосвязи, тогда как волнение морской поверхности проявляется при распространении над ней волн, длина которых составляет метры или меньше, т. е. волн диапазонов ОВЧ, УВЧ и более коротких.

От электропроводности почвы зависят потери в ней энергии волн. Если бы верхний слой её был идеально проводящим или был идеальным диэлектриком, то прохождение волн не было бы связано с потерями. В реальных условиях электромагнитные поля индуктируют в почве токи, и при их протекании выделяется тепло. Следовательно, электромагнитная энергия волн, падающих на землю или распространяющихся вдоль неё, частично поглощается.

Атмосфера состоит из трех основных областей, которые неодинаково пропускают электромагнитные волны. Эти области - тропосфера, стратосфера и ионосфера.

Тропосфера - нижняя часть атмосферы толщиной 10-18 км. С высотой температура и давление воздуха, а также содержание водяных паров в тропосфере изменяются, но газовый состав ее практически постоянен: азот и кислород. Стратосфера простирается примерно до 80 км. Признаком перехода к стратосфере является прекращение понижения температуры, которая в верхней части тропосферы падает до минус (50-60)°С. В стратосфере температура до высоты около 40 км изменяется мало, а затем примерно до высоты 60 км растет до плюс 80°, далее опять падает. Повышение температуры объясняется поглощением энергии ультрафиолетового излучения Солнца содержащимся в воздухе озоном. Ионосфера представляет собой обширный слой разреженного газа. Падающее на ионосферу излучение Солнца вызывает ионизацию газа, т. е. отрыв электронов от атомов. Поскольку плотность газа на больших высотах мала, вероятность встречи свободного электрона с ионизированным атомом, которая приводит к их объединению (рекомбинации) невелика. По этой причине значительная часть газа остается ионизированной, т. е. представляет собой плазму. Ионизированный газ обладает электропроводностью. Концентрация свободных электронов определяется интенсивностью ионизирующего излучения Солнца и зависит от высоты, времени суток и сезона года. Как слой ионизированного газа, ионосфера простирается примерно от 60 до 1,5 тыс. километров, но на очень больших высотах плотность газа мала, соответственно уменьшается и количество ионов, а в итоге и их влияние на прохождение радиоволн. По этой причине существенное влияние на распространение волн оказывает только часть ионосферы до высот около 400 км. Благодаря электропроводности ионосфера может служить космическим зеркалом, отражающим падающие на нее радиоволны. Хотя свойства ионосферы и подвержены суточным, сезонным и иным изменениям, относительная регулярность этих изменений делает возможным использование этого слоя в постоянно действующих системах радиосвязи. В атмосфере наблюдаются и иные неоднородности и, хотя они менее регулярны, они также учитываются в построении ряда систем радиосвязи. Волны, распространяющиеся вдоль поверхности Земли, соответственно называются поверхностными или земными.

Волны, распространяющиеся через атмосферу и отражающиеся к поверхности Земли от атмосферных неоднородностей, называются пространственными или небесными. В третьем варианте, как уже указывалось, волны проходят через ионосферу в заатмосферное пространство и возвращаются в желательную географическую зону на поверхности Земли после обработки и усиления сигналов в бортовых ретрансляторах космических аппаратов. Волны идут от антенны передатчика во все стороны, и по мере удаления их энергия распределяется на все большее пространство. Величина энергии в каждой части пространства становится все меньше. Единственным средством, снижающим рассеяние энергии, является направленное излучение, при котором радиоволны посылаются узким пучком подобно лучу прожектора. При этом увеличивается дальность действия и во многих случаях исключается возможность подслушивания. Направленное излучение волн используется в радиомаяках для авиации и морского транспорта, в радиолокации, позволяющей определять местонахождение различных объектов, и т. д. При прохождении радиоволн через различные вещества наблюдается поглощение энергии волн этими веществами. Оно отсутствует в безвоздушном пространстве. Очень мало поглощение в неионизированном воздухе. В твердых диэлектриках, полупроводниках и проводниках поглощение радиоволн значительно. Если радиоволна встречает какой-либо проводник, то большая часть ее энергии поглощается им. Объясняется это тем, что волна приводит в движение электроны проводника и создает в нем ток высокой частоты. На образование его и расходуется энергия волны. В частности, на этом основан прием радиоволн антенной. Если же волна движется вдоль проводника, то поглощение энергии гораздо меньше. Поэтому над проводящей поверхностью, например, над морем, вдоль рек, железных дорог и проводных линий, радиоволны распространяются дальше, чем над сухой почвой. Диэлектрики также поглощают энергию волн. Поле волны создает в молекулах диэлектриков смещение электронов — ток смещения. Он является током высокой частоты, т. е. представляет собой колебание электронов внутри молекул. Токи смещения вызывают нагревание диэлектрика, на что расходуется энергия. Полупроводники объединяют в себе свойства проводников и диэлектриков. В них возникают и токи проводимости и токи смещения. Ионизированные слои атмосферы, являющиеся полупроводниками, заметно поглощают энергию проходящих волн. При движении радиоволн над земной поверхностью происходит поглощение их энергии самой почвой и различными местными предметами и препятствиями в виде гор, холмов, лесов, городских зданий, проводных линий и т.д. Особенно сильное поглощение создают металлические крыши железобетонные сооружения, провода, горы с металлическими рудами или влажными пластами земли, сырые каменные дома, леса.

В однородной среде волна распространяется прямолинейно, а в местах перехода волны из одной среды в другую наблюдаются отражение ее и преломление. Эти явления всегда возникают на границе двух сред, имеющих различные диэлектрические проницаемости εI и ε2 Отражение заключается в том, что волна, дойдя до границы между средами, поворачивает под некоторым углом обратно (рисунок. 9.2 а). Волна, пришедшая под прямым углом к плоской поверхности, отражается обратно также под прямым углом. Если к такой поверхности пришли волны параллельным пучком,, то они после отражения пойдут также параллельно. В случае неровной поверхности отраженные волны пойдут в разных направлениях. Лучше всего радиоволны отражаются от проводников.

Физический смысл отражения радиоволн заключается в том, что падающая

волна создает в поверхностном слое отражающего тела токи

Рисунок 9,2 - Отражение (а), преломление (б) и дифракция (в) волн

 

При переходе волн из одного диэлектрика в другой наблюдается их преломление (рефракция), т. е. изменение направления движения волны (рисунок 9.2, б). Преломление волн объясняется тем, что в различных веществах скорость распространения волн различна. Чем больше разница между диэлектрическими проницаемостями εI и ε2 и чем длиннее волна, тем сильнее преломление.

Таким образом, радиоволна, встречая проводник, частично поглощается и частично отражается. При встрече радиоволны с диэлектриком или полупроводником она поглощается, отражается и преломляется.

Термином дифракция волн называют огибание волнами препятствий. Например, радиоволны способны обогнуть гору, большое здание и т. д. (рисунок 9.2, в). Чем длиннее волна, тем лучше она огибает препятствия. Конечно, волна не может повернуть очень круто. Поэтому иногда за горами или металлическими сооружениями, сквозь которые радиоволны пройти не могут, образуются местные «зоны молчания». В них не слышны некоторые радиостанции, но несколько дальше, благодаря дифракции, слышимость снова восстанавливается.

Интерференция волн есть сложение в данном месте двух или нескольких волн. Интерферировать, т. е. складываться, могут волны различных передающих радиостанций. Тогда возникают помехи в виде писка, воя, свиста, гудения, хрипения. Если же интерференция наблюдается между волнами одной и той же станции, пришедшими к месту приема разными путями, то благодаря разнице в их фазах получается либо усиление, либо ослабление волны.

<== предыдущая лекция | следующая лекция ==>
Распространение радиоволн, факторы влияющие на распространение радиоволн и их затухание | Распространение радиоволн на наземных радиолиниях, особенности распространения в городских условиях
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 707; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.