Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тяговые свойства асинхронного ТД





Тяговые и тормозные свойства ЭПС с бесколлекторными ТД.

К бесколлекторным ТД, применяемым на подвижном составе ж.д. следует отнести асинхронные и вентильные ТД. Приоритет в применении бесколлекторных ТД объясняется тем, что у них отсутствует коллекторно-щеточный аппарат – наиболее уязвимая часть коллекторного двигателя. Он может ограничивать мощность ТД по нагреву, ограничивает максимальное напряжение и частоту вращения якоря, а кроме того уменьшает активную длину якоря и полюсов – т.е. снижает потенциальную мощность. В эксплуатации коллекторно-щеточный аппарат требует к себе пристального внимания – начиная от периодической смены щеток и заканчивая очисткой коллекторного узла от токопроводящей пыли от изнашивающихся щеток и коллектора. При ремонте коллекторного двигателя необходимо обтачивать износившийся коллектор и продороживать его, чего не требуется для асинхронного ТД.

Применение бесколлекторных ТД позволит увеличить мощность ЭПС в 1,5–1,7 раза по сравнению с коллекторными при сохранении габаритных размеров ТД на прежнем уровне. Эксплуатационные расходы снизятся на 30–40%. Стоимость бесколлекторных ТД в 1,5–1,7 ниже.

Проблема применения бесколлекторных ТД привлекла разработчиков ЭПС практически одновременно с появлением электрической тяги. В швейцарском городе Лугано в 1896 г. на трамвайном вагоне впервые были использованы трехфазные ТД мощностью 15 кВт. Система трехфазного тока на электровозах с асинхронными ТД разрабатывалась в Италии, Франции, Венгрии, США. Перед Второй мировой войной в Германии велись разработки электровоза с вентильными ТД. Поскольку для эффективной работы бесколлекторного ТД необходима реализация сложных законов регулирования, то при недостаточном развитии полупроводниковой техники ЭПС получается очень сложным и ненадежными в работе.

 

В асинхронном ТД используется взаимодействие вращающегося магнитного поля статора с током, наведенным этим полем в роторе. Вращающий момент асинхронного ТД описывается следующей формулой:



,

где С – постоянная, зависящая от параметров двигателя;

U1 – питающее напряжение;

s – скольжение ротора;

f1 – частота питающего напряжения.


Сравниваемый параметр Коллекторные Бесколлекторные
Постоянного тока Пульсирующего тока Однофазного тока Трехфазного тока
Пониженной частоты Нормальной частоты Асинхронные Синхронные
Предельная мощность, кВт
Напряжение, В
КПД, % 90…93 89…90 86…88 93…94
Удельная масса, кг/кВт 6,8…7,5 4,5…5,5 3,9 8,7 1,6…3,0 3,7…4,0
Относительная стоимость 1,4 1,0 1,1 1,6 0,5 0,75
Регулируемые величины Uд, Iв Uд, Iв Uд, Iв Uд Uд, fд, f2 Uд, fд, Iв

Для питания АТД на ЭПС постоянного тока необходимо иметь автономный инвертор напряжения или тока. На ЭПС переменного тока кроме автономного инвертора необходим выпрямитель. И выпрямитель и инвертор могут быть объединены в одном полупроводниковом устройстве – преобразователе числа фаз (ПЧФ). На современном этапе развития силовой полупроводниковой техники выгоднее на ЭПС постоянного тока дополнительно иметь входной импульсный преобразователь для регулирования величины напряжения, подводимого к ТД.

Т.к. нагрузка ТД в эксплуатации может изменяться в широких пределах, то имея сложную многофункциональную систему управления важно и должно соблюдать условия, при которых ТД работает в наиболее экономичном режиме:

min = (DРм + DРс + DР2) = const.

В первом приближении считают, что механические м и магнитные с потери в двигателе не зависят от нагрузки, т.е. от тока ротора. Потери в роторе

2 = М × (w1 – wвр),

где w1 – угловая частота вращения магнитного поля статора;

wвр – угловая частота вращения ротора.

Рассмотрим, при каком условии потери минимальны. Так как мы условились, что потери механические и магнитные не зависят от нагрузки, то условие минимума потерь сводится к минимуму потерь в роторе:

,

где fвр – частота вращения ротора;

f2 – частота тока ротора.

Следовательно, условие

min = const

преобразуется в условие

f2 min = (f1 – fвр)min = const.

Для выявления способов реализации этого условия рассмотрим два режима работы двигателя. Допустим, что в первом режиме статор питается напряжением U1 с частотой f1, а в другом – соответственно U1' и f1'. Скольжение ротора в этих режимах равно:

.

Вращающий момент в этих режимах будет соответственно равен:

.

Найдем соотношение моментов в этих режимах при условии

f1 – fвр = f1' – fвр' = const:

.

Отсюда

.

Этот закон оптимального частотного управления асинхронным двигателем был сформулирован М.П.Костенко в 1925 г. Из этого выражения следует, что оптимальный режим работы асинхронного двигателя определяется соотношением трех его параметров – напряжения и частоты питающего напряжения, а так же вращающего момента. Изменяя соотношение этих составляющих таким образом, чтобы соблюдалось условие минимума потерь т.е. условие работы с максимальным КПД и cosj. При больших нагрузках следует учитывать падение напряжения в обмотке ротора и для получения наилучших показателей вносить коррективы в закон регулирования. С этой целью на электровозах применяется система автоматического регулирования режимов работы ТД.

Поскольку для электрической тяги удобнее иметь выражение закона регулирования не от частоты питающего напряжения и момента, а от скорости и силы тяги, то выражение закона Костенко преобразуется следующим образом:

.

Выражение получено с допущением, что на рабочей части характеристики скорость движения пропорциональна частоте питающего напряжения без учета скольжения:

,

где р – число пар полюсов ТД.

Сила тяги, как известно, пропорциональна вращающему моменту без всяких допущений:

.

Для ЭПС наиболее характерен следующий закон регулирования: до скорости выхода на номинальную характеристику поддерживается постоянство силы тяги, а затем – постоянство мощности.



Постоянство силы тяги означает постоянство вращающего момента. Вращающий момент определяется взаимодействием магнитного потока статора и тока ротора, приведенного к обмотке статора (I2'). Следовательно, постоянство вращающего момента равносильно I2' = const. Ток статора можно представить как сумму векторов тока холостого хода и тока ротора, приведенного к обмотке статора:

.

Следовательно, постоянство тока ротора равносильно постоянству тока статора и закон регулирования при постоянстве силы тяги будет выглядеть следующим образом:

.

Т.е. для поддержания постоянной силы тяги необходимо с ростом скорости повышать напряжение питания, пропорционально скорости или частоте.

После выхода на номинальную характеристику целесообразно поддерживать постоянной мощность двигателя. Поскольку

,

то

.

Следовательно

.

Иными словами, для поддержания постоянства мощности необходимо с ростом скорости изменять питающее напряжение пропорционально корню квадратному из его частоты. Рост питающего напряжения требует более мощной изоляции обмотки статора, и, следовательно, приведет к увеличению габаритных размеров ТЭД.

В случае реализации закона постоянства питающего напряжения мощность и ток статора будет изменяться обратно пропорционально скорости движения, а сила тяги – обратно пропорционально квадрату скорости:

; Þ .

; Þ .

Так как в этом случае сила тяги падает слишком интенсивно, рационально реализовать гибридный закон регулирования: при достижении максимальной мощности напряжение питания еще не достигает своего максимального значения. Реализуется режим постоянства мощности. При достижения напряжением питания максимума – режим постоянства питающего напряжения.

Логично предположить, что система автоматического управления способна реализовать алгоритм поддержания постоянной скорости движения. Как следует из формулы, постоянство скорости соответствует постоянству частоты питающего напряжения. В этом случае

,

т.е. при постоянной скорости движения необходимо изменять питающее напряжение пропорционально корню квадратному из силы тяги.

Таким образом, одним из достоинств асинхронного ТД является возможность с помощью системы управления реализовывать различную жесткость характеристик: при постоянстве частоты реализуется жесткая характеристика (хороша при необходимости использовать максимальную силу по условиям сцепления), при постоянстве напряжения – мягкую.

Максимальную частоту питающего напряжения выбирают исходя из максимальной скорости движения ЭПС и параметров ТД и тяговой передачи:

.

Минимальную частоту выбирают из условия трогания с места при условии, что ТД реализует силу тяги, превышающую номинальную на 30…50% при минимальном токе статора.

 





Дата добавления: 2014-01-07; Просмотров: 512; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:

  1. I.3. Общие свойства нелинейностей. Типовые звенья
  2. P-n переход и его свойства
  3. V. АКУСТИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД И МАССИВОВ. ОСНОВНЫЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА АКУСТИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД
  4. Абсолютное ггидростатическоеидростатическое давление и его свойства
  5. Адсорбционные и каталитические свойства полупроводников
  6. Алгебраические методы решения матричных игр иногда производить проще, если использовать также следующие свойства матричных игр.
  7. Алгоритм и его свойства
  8. Алмазы и сверхтвердые материалы и их свойства.
  9. Алюминиевые сплавы, их свойства и особенности работы
  10. Алюминий и сплавы на его основе, маркировка, свойства и область применения
  11. Аминокислоты отличаются друг от друга структурой боковых цепей, от которой зависят химические, физические свойства и физиологические функции белков в организме.
  12. Анализ механической характеристики асинхронного двигателя

studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.007 сек.