Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Философские и физические основания космологии. Формирование идеи саморазвивающейся Вселенной

Современная космология - это астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя и определенное понимание свойств всей Вселенной. Космология основывается на астрономических наблюдениях Галактики и других звездных систем, общей теории относительности, физике микропроцессов и высоких плотностей энергии, релятивистской термодинамике и ряде других новейших физических теорий.

Космология берет свое начало в представлениях древних, в частности, в древнегреческой мифологии, где подробно и достаточно систематизировано рассказывается о сотворении мира и его устройстве. Общепризнанным итогом античной космологии стала геоцентрическая концепция Птолемея, просуществовавшая в течение всего Средневековья.

С приходом Нового времени философия уступила свое первенство в создании космологических моделей науки, которая добилась особенно больших успехов в XX веке, перейдя от различных догадок в этой области к достаточно обоснованным фактам, гипотезам и теориям. Отвечая на закономерный вопрос, откуда мы можем знать, что происходит в масштабах Вселенной, они исходили из очень популярной методологической установки, предполагающей, что на разных уровнях существования природы повторяются одни и те же законы, одно и то же устройство материальных систем. Различия могут быть лишь в масштабах. Основателем научной космологии считается Николай Коперник, который поместил Солнце в центр Вселенной и низвел Землю до положения рядовой планеты Солнечной системы. Конечно, он был весьма далек от правильного понимания устройства мира. Так, по его убеждению, за орбитами пяти известных в то время планет располагалась сфера неподвижных звезд. Звезды на этой сфере считались равноудаленными от Солнца, а природа их была неясной. Вселенная по Копернику - мир в скорлупе. В этой модели легко найти немало пережитков средневекового мировоззрения. Но прошло всего несколько десятилетий, и Джордано Бруно разбил коперниковскую «скорлупу» неподвижных звезд.

Д. Бруно считал звезды далекими солнцами, согревающими бесчисленные планеты других планетных систем. Он считал, что Вселенная бесконечна, что существует бесчисленное число миров, подобных миру Земли. Он полагал, что Земля есть светило, и что ей подобны Луна и другие светила, число которых бесконечно, и что все эти небесные тела образуют бесконечность миров. Он представлял себе бесконечную Вселенную, заключающую в себе бесконечное множество миров.

Идеи Бруно намного обогнали его век. Но он не мог привести ни одного факта, который бы подтверждал его космологию - космологию бесконечной, вечной и населенной Вселенной.

Прошло всего десятилетие, и Галилео Галилей в изобретенный им телескоп увидел в небе то, что до сих пор оставалось скрытым для невооруженного глаза. Горы на Луне наглядно доказывали, что Луна и в самом деле есть мир, похожий на Землю. Спутники Юпитера, кружащиеся вокруг величайшей из планет, походили на наглядное подобие Солнечной системы. Смена фаз Венеры не оставляла сомнений в том, что эта освещенная Солнцем планета действительно обращается вокруг него.

Современник и друг Галилея, Иоганн Кеплер, уточнил законы движения планет, а великий Исаак Ньютон доказал, что все тела во Вселенной, независимо от размеров, химического состава, строения и других свойств взаимно тяготеют друг к другу. Космология Ньютона вместе с успехами астрономии XVIII и XIX веков определила то мировоззрение, которое иногда называют классическим. Оно стало итогом начального этапа развития научной космологии.

Эта классическая модель достаточно проста и понятна. Вселенная считается бесконечной в пространстве и во времени, иными словами, вечной. Основным законом, управляющим движением и развитием небесных тел, является закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами и играет пассивную роль вместилища для этих тел. Исчезни вдруг все эти тела, пространство и время сохранились бы неизменными. Количество звезд, планет и звездных систем во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. И на смену погибшим, точнее, погасшим звездам вспыхивают новые, молодые светила. Хотя детали возникновения и гибели небесных тел оставались неясными, в основном эта модель казалась стройной и логически непротиворечивой. В таком виде эта классическая модель господствовала в науке вплоть до начала XX века.

Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивистской теории тяготения, созданной Альбертом Эйнштейном в 1916 году. В основе этой модели лежат два предположения:

1) свойства Вселенной одинаковы во всех ее точках
(однородность) и направлениях (изотропность);

2) наилучшим известным описанием гравитационного поля являются уравнения Эйнштейна. Из этого следует так называемая кривизна пространства и связь кривизны с плотностью массы.

Космологию, основанную на этих постулатах, называют релятивистской. Важным пунктом данной модели является ее нестационарность, это означает, что Вселенная не может находиться неизменном состоянии.

Новый этап в развитии релятивистской космологии был связан с исследованиями русского ученого А.А. Фридмана (1888-1925), который математически доказал идею саморазвивающейся Вселенной. Работа А.А Фридмана в корне изменила основоположения прежнего научного мировоззрения. По его утверждению космологические начальные условия образования Вселенной были сингулярными. Разъясняя характер эволюции Вселенной, расширяющейся начиная с сингулярного состояния, Фридман особо выделял два положения: а) радиус кривизны Вселенной с течением времени постоянно возрастает, начиная с нулевого значения; б) радиус кривизны меняется периодически: Вселенная сжимается в точку (в ничто, сингулярное состояние), затем снова из точки, доводит свой радиус до некоторого значения, далее опять, уменьшая радиус своей кривизны, обращается в точку и т.д.

Составной частью модели расширяющейся Вселенной является представление о Большом Взрыве, происшедшем где-то примерно 12 - 18 млрд. лет назад. Джордж Лемер был первым, кто выдвинул концепцию «Большого взрыва» из так называемого «первобытного атома» и последующего превращения его осколков в звезды и галактики. Конечно, со стороны современного астрофизического знания данная концепция представляет лишь исторический интерес, но сама идея первоначального взрывоопасного движения космической материи и ее последующего эволюционного развития неотъемлемой частью вошла в современную научную картину мира.

Принципиально новый этап в развитии современной эволюционной космологии связан с именем американского физика Г.А. Гамова (1904-1968), благодаря которому в науку вошло понятие «Горячей Вселенной». Согласно предложенной им модели «начала» эволюционирующей Вселенной «первоатом» Леметра состоял из сильно сжатых нейтронов, плотность которых достигала чудовищной величины - один кубический сантиметр первичного вещества весил миллиард тонн. В результате взрыва этого «первоатома», по мнению Г.А. Гамова, образовался своеобразный космологический котел с температурой порядка трех миллиардов градусов, где и произошел естественный синтез химических элементов. Осколки «первичного яйца» - отдельные нейтроны затем распались на электроны и протоны, которые, в свою очередь, соединившись с нераспавшимися нейтронами, образовали ядра будущих атомов. Все это произошло в первые 30 минут после «Большого Взрыва.

Однако Гамову и его сотрудникам не удалось дать удовлетворительное объяснение естественному образованию и распространенности тяжелых химических элементов во Вселенной, что явилось причиной скептического отношения к его теории со стороны специалистов. Как оказалось, предложенный механизм ядерного синтеза не мог обеспечить возникновение наблюдаемого ныне количества этих элементов.

Согласно квантовой теории то, что остается после удаления частиц материи (к примеру, из какого-либо закрытого сосуда с помощью вакуумного насоса), вовсе не является пустым в буквальном смысле слова, как это считала классическая физика. Хотя вакуум не содержит обычных частиц, он насыщен «полуживыми», так называемыми виртуальными тельцами. Чтобы их превратить в настоящие частицы материи, достаточно возбудить вакуум, например, воздействовать на него электромагнитным полем, создаваемым внесенными в него заряженными частицами.

В настоящее время еще нет всесторонне проверенной и признанной всеми теории происхождения крупномасштабной структуры Вселенной, хотя ученые значительно продвинулись в понимании естественных путей ее формирования и эволюции.

О процессе продолжающегося расширения нашей Вселенной свидетельствуют почти все данные наблюдений. По мере расширения пространства материя становится все более разреженной, галактики и их скопления все более удаляются друг от друга, а температура фонового излучения приближается к абсолютному нулю. Со временем все звезды завершат свой жизненный цикл и превратятся либо в белых карликов, остывающих до состояния холодных черных карликов, либо в нейтронные звезды или черные дыры. Эра светящегося вещества закончится, и темные массы вещества, элементарные частицы и холодное излучение будут бессмысленно разлетаться в непрерывно разряжающейся пустоте.

Такой момент настанет тогда, когда возраст Вселенной станет примерно в десять миллионов раз больше предполагаемого на сегодня Должно пройти около 1066 лет, прежде чем черные дыры солнечной массы начнут взрываться, выбрасывая потоки частиц и излучения.

По мнению Берроу и Типлера, если запас энергии во Вселенной достаточен только для того, чтобы обеспечить ее неограниченное расширение, то эффект электрического притяжения в электронно-позитронных парах перевесит и гравитационное притяжение и общее расширение Вселенной как целого. За определенное конечное время все электроны проаннигилируют со всеми позитронами. В конечном итоге последней стадией существующей материи окажутся не разлетающиеся холодные темные тела и черные дыры, а безбрежное море разреженного излучения, остывающего до конечной, повсюду одинаковой, температуры. В неясном далеком будущем прошедшая эпоха звездной активности может оказаться лишь кратчайшим мгновением в бесконечной жизни Вселенной.

<== предыдущая лекция | следующая лекция ==>
Понятие картины мира | Характерные черты развития
Поделиться с друзьями:


Дата добавления: 2014-01-14; Просмотров: 687; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.