Нехай проводяться незалежні випробування, в кожному з яких ймовірність появи події А рівна р (0 < p < 1), а не появи q = 1- p. Випробування закінчуються, як тільки відбувається подія А. Таким чином, якщо подія А відбулась в k -му випробуванні, то попередніх k-1 випробування Х є: х1=1, х2=2, …
Нехай в перших k-1 випробуваннях подія А не відбулася, а в k -му випробуванні з’явилась. Тоді ймовірність рівна
Покладаючи k=1,2, … у формулі (6), отримаємо геометричну прогресію з першим членом Р і знаменником q (0<q<1): p,qp,q2p, … qk-1p, … тому розподіл називається геометричним.
Приклад 3. Проводяться багаторазові випробування елементу на надійність до тих пір, поки він не відмовить в роботі. Ймовірність відмови елементу в кожному випробуванні рівна 0,1. Знайти числові характеристики випадкової величини Х – числа випробувань, які треба провести.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление