Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Структура ИС на основе ХД

 

Примерная структура ИАС Примерная структура ИАС, построенной на основе ХД, показана на рисунке. В конкретных реализациях отдельные компоненты этой схемы могут отсутствовать. При такой организации ИАС ХД функционирует по следующему сценарию: по заданному регламенту в него собираются данные из различных источников – БД систем оперативной обработки. В ХД поддерживается хронология: наравне с текущими хранятся исторические данные с указанием времени, к которому они относятся. В результате необходимые доступные данные об объекте управления собираются в одном месте, приводятся к единому формату, согласовываются и, в ряде случаев, агрегируются до минимально требуемого уровня обобщения. Несмотря на то, что ХД содержат заведомо избыточную информацию, которая и так имеется в базах или файлах оперативных систем, появление концепции ХД вызвано тем, анализировать данные оперативных систем напрямую невозможно или очень затруднительно. Это объясняется:
  • разрозненностью данных (OLTP-системы, текстовые отчеты, xls-файлы);
  • хранением их в форматах различных СУБД и в разных узлах корпоративной сети. Но даже если на предприятии все данные хранятся на центральном сервере БД (что бывает крайне редко), аналитик почти наверняка не разберется в их сложных, подчас запутанных структурах
  • сложные аналитические запросы к оперативной информации тормозят текущую работу компании, надолго блокируя таблицы и захватывая ресурсы сервера.
Можно констатировать, что практически в любой организации сложилась парадоксальная ситуация: - информация вроде бы, где-то и есть, её даже слишком много, но она неструктурированна, несогласованна, разрознена, не всегда достоверна, её практически невозможно найти и получить. В результате можно говорить об отсутствие информации при ее наличии и даже избыточности.. Для того, чтобы извлекать полезную информацию из данных, они должны быть организованы способом, отличным от принятого в OLTP-системах потому что:
  • в OLTP-системах используются нормализованные таблицы БД. Нормализация эффективна, если отношения часто перестраиваются (вставка), но дает отрицательный эффект в случае операции выборки (особенно в случае сложных запросов). А в DSS-системах только операции выборки, и данные редко меняются, поэтому данные целесообразно хранить в виде слабо нормализованных отношений, содержащих заранее вычисленные основные итоговые данные. Большая избыточность и связанные с ней проблемы тут не страшны, т.к. обновление происходит только в момент загрузки новой порции данных. При этом происходит как добавление новых данных, так и пересчет итогов.
  • выполнение некоторых аналитических запросов требует хронологической упорядоченности данных. Реляционная модель не предполагает существования порядка записей в таблицах.
  • в случае аналитических запросов чаще используются не детальные, а обобщенные (агрегированные данные).
Организация потоков данных Организация потоков данных в ХД показана на рисунке
<== предыдущая лекция | следующая лекция ==>
Свойства данных | Data Mart - Витрины данных
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 337; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.