Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Смешанные стратегии

В общем случае V* ≠ V* - седловой точки не существует. Оптимальное решение в чистых стратегиях также не существует. Однако, если расширить понятие чистой стратегии введением понятия смешанной стратегии, то удаётся реализовать алгоритм нахождения оптимального решения не вполне определённой игровой задачи, аналогичный рассмотренному выше. В такой ситуации предлагается использование статистического (вероятностного) подхода к нахождению оптимального решения антагонистической игры. Для каждого игрока, наряду с данным набором возможных для него стратегий, вводится неизвестный вектор вероятностей (относительных частот), с которыми следует применять ту или иную стратегию.

Обозначим вектор вероятностей (относительных частот) выбора заданных стратегий игрока A следующим образом:

P = (p1, p2,…, pm),

где pi≥ 0, p1 + p2 +…+ pm= 1. Величина pi называется вероятностью (относительной частотой) применения стратегии Ai.

Аналогично для игрока B вводится неизвестный вектор вероятностей (относительных частот) имеет вид:

Q = (q1, q2,…, qn),

где qj≥ 0, q1 + q2 +…+ qn = 1. Величина qj называется вероятностью (относительной частотой) применения стратегии Bj. Совокупность (комбинация) чистых стратегий A1, A2, …Am и B1, B2, …Bn в сочетании с векторами вероятностей выбора каждой из них называются смешанными стратегиями.

Основной теоремой в теории конечных антагонистических игр является Теорема фон Неймана: каждая конечная матричная игра имеет, по крайней мере, одно оптимальное решение, возможно, среди смешанных стратегий.

Из этой теоремы следует, что не вполне определённая игра имеет хотя бы одно оптимальное решение в смешанных стратегиях. В таких играх решением будет пара оптимальных смешанных стратегий P* и Q*, таких, что если один из игроков придерживается своей оптимальной стратегии, то и другому игроку не выгодно отклоняться от своей оптимальной стратегии.

Средний выигрыш игрока A определяется математическим ожиданием:

Если вероятность (относительная частота) применения стратегии отлична от нуля, то такая стратегия называется активной.

Стратегии P*, Q* называются оптимальными смешанными стратегиями, если

MA(P, Q*) ≤ MA(P*, Q*) ≤ MA(P*, Q) (1)

В этом случае MA(P*, Q*) называется ценой игры и обозначается через V (V* ≤ V ≤ V*). Первое из неравенств (1)означает, что отклонение игрока A от своей оптимальной смешанной стратегии при условии, что игрок B придерживается своей оптимальной смешанной стратегии, приводит к уменьшению среднего выигрыша игрока A. Второе из неравенств означает, что отклонение игрока B от своей оптимальной смешанной стратегии при условии, что игрок A придерживается своей оптимальной смешанной стратегии, приводит к увеличению среднего проигрыша игрока B.

<== предыдущая лекция | следующая лекция ==>
Нижняя и верхняя цена игры | Правила решения игры 2xn
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 815; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.