КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Постановка задачи. Составление опорного плана
Метод потенциалов. Составление опорного плана. Постановка задачи. Транспортная задача ставится следующим образом: имеется m пунктов отправления, в которых сосредоточены запасы каких-то грузов. Имеется n пунктов назначения подавшие заявки соответственно на груза. Известны стоимости р i j перевозки единицы груза от каждого пункта отправления до каждого пункта назначения. Все числа р i j , образующие прямоугольную таблицу заданы. Требуется составить такой план перевозок (откуда, куда и сколько единиц поставить), чтобы все заявки были выполнены, а общая стоимость всех перевозок была минимальна. Далее, предполагается, что (1) где bi есть количество продукции, находящееся на складе i, и aj – потребность потребителя j. Замечание. Если то количество продукции, равное остается на складах. В этом случае мы введем "фиктивного" потребителя n +1 с потребностью и положим транспортные расходы pi,n +1 равными 0 для всех i. Если то потребность не может быть покрыта. В этом случае начальные условия должны быть изменены таким образом, чтобы потребность в продукции могла быть обеспечена. Обозначим через xij количество продукции, поставляемое со склада i потребителю j. В предложении (1) нам нужно решить следующую задачу (математическая модель транспортной задачи): (2) Транспортную задачу мы можем характеризовать транспортной таблицей и таблицей издержек:
Допустимый план перевозок будем представлять в виде транспортной таблицы:
Cумма элементов строки i должна быть равна bi, а сумма элементов столбца j должна быть равна aj, и все должны быть неотрицательными. +х25+х35=5; хij 0 для i Пример 1.
Мы получаем следующую задачу: х11+х12+х13+х14+х15=15, х21+х22+х23+х24+х55=15, х31+х32+х33+х34+х35 =20, х11 +х21+х31=20, х12+х22+х32=5, х13+х23+х33=10, х14 +х24+х34 х15 = 1,2,3; j = 1,2,3,4,5; Кmin=5х11+6х12+3х13+5х14+9х15+6х21+4х22+7х23+3х24+5х25+2х31+5х32+3х33+х34+8х35; Такие задачи целесообразно решать при помощи особого варианта симплекс-метода – так называемого метода потенциалов. Все транспортные задачи имеют оптимальное решение. Если все значение aj и bi в условиях транспортной задачи целочисленные, то переменные xij во всех базисных решениях (а так же и в любом оптимальном базисном решении) имеют целочисленные значения.
Дата добавления: 2014-01-15; Просмотров: 315; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |