Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Насосные установки




 

 

Насосные агрегаты можно условно разделить на три большие группы: мощные (более 500кВт) агрегаты энергетических объектов; промышленные агрегаты и насосные станции централизованного водоснабжения (50-300кВт); массовые установки (2-50кВт), к которым относятся насосы с подачей 12-100м3/ч и напором 20-80м.в.ст.

 

В первой группе в силу ее специфики применяются прогрессивные виды электропривода. Во второй и особенно в третей, наиболее массовой, до настоящего времени преобладает нерегулируемый электропривод с асинхронными короткозамкнутыми двигателями, а управление производительностью осуществляется крайне неэффективным способом - дросселированием. Это не позволяет обеспечить режим рационального энергопотребления и расхода воды, пара, воздуха и т.д. при изменении технологических потребностей в широких пределах.

Характерным примером таких механизмов являются насосные станции холодного и горячего водоснабжения и систем отопления жилых и промышленных зданий. Выбранные, исходя из максимальной производительности, эти механизмы значительную часть времени работают с меньшей производительностью. По некоторым данным среднесуточная загрузка насосов холодного водоснабжения составляет всего 50-55% максимальной. Существующие системы водоснабжения не обеспечивают заметного снижения потребляемой мощности при уменьшении расхода, а также обусловливают существенный рост давления (напора) в системе, что приводит к утечкам воды и неблагоприятно сказывается на работе технологического оборудования и сетей водоснабжения.

 

Пути повышения эффективности работы насосных установок: повышение КПД насосов и трубопроводов; регулирование производительности установки; упорядочение графика нагрузок установки; организационные мероприятия.

 

Повышение КПД насосов обеспечивается за счёт тщательной балансировки рабочих колес, регулярной заменой уплотнителей, обеспечения рабочей точки насоса в зоне максимальных значений КПД.

 

Повышение КПД трубопровода может быть за счёт:

· увеличения сечения труб;

· включение на параллельную работу резервного нагнетательного става;

· сокращение длины трубопровода;

· регулярная очистка трубопровода;

· ликвидация в трубопроводе излишней арматуры и ненужных поворотов или снижение их сопротивления сглаживанием острых углов;

· использование арматуры с меньшими значениями коэффициента местного сопротивления (например, замена в приемных устройствах на всасывающих трубопроводах тарельчатых клапанов на шаровые).

 

Расход электроэнергии насосной установкой в год

, кВт∙ч/год,

 

где T – число часов работы насоса в год, ч/год; ηр – КПД трубопровода.

 

Традиционные способы регулирования подачи насосных установок состоят в дросселировании напорных линий насосов и изменении общего числа работающих агрегатов по одному из технологических параметров - давлению на коллекторе или в диктующей точке сети, уровню в приемном или регулирующем резервуаре и др. Эти способы регулирования направлены на решение технологических задач и практически не учитывают энергетических аспектов транспорта воды. При таком регулировании от 5 до 15%, а в отдельных случаях до 25-30% потребляемой электроэнергии затрачивается нерационально из-за:

· потерь энергии в дросселирующем органе;

· создания избыточных напоров в трубопроводной сети;

· утечек и непроизводительных расходов воды в сети и у потребителя;

· увеличения геометрического подъема при откачке воды из резервуаров канализационных насосных станций и т.д.

 

Поэтому с появлением надежного регулируемого электропривода создались предпосылки для создания принципиально новой технологии транспорта воды с плавным регулированием рабочих параметров насосной установки без непроизводительных затрат электроэнергии с широкими возможностями повышения эффективности работы систем водоподачи. При этом геометрическим местом рабочих точек насосной установки становятся характеристики трубопроводов, а не характеристики насосов как в случае регулирования подачи насосных агрегатов с постоянной частотой вращения

Рисунок а иллюстрирует возможности снижения мощности, потребляемой двигателем насоса, при регулировании скорости электропривода по сравнению с регулированием дроссельной заслонкой.

При номинальном расходе и напоре насос работает в точке А, которой соответствует характеристика магистрали 3 и характеристика Q - H насоса (кривая 1) при номинальной скорости двигателя. С уменьшением расхода при нерегулируемом электроприводе (на рисунке показан расход, составляющий 0,6 Q н) за счет дроссельного регулирования происходит изменение сопротивления магистрали (кривая 4). Насос работает в точке В кривой 1, что приводит к возрастанию напора, который становится больше номинального. Мощность, потребляемая насосом, пропорциональна площади прямоугольника ODBF.

При использовании регулируемого электропривода за счет снижения скорости насос работает при снижении расхода в точке С, что соответствует другой характеристике Q - H (кривая 2) при неизменной характеристике магистрали (кривая 3). Мощность, потребляемая электроприводом в этом случае, пропорциональна OECF, что наглядно иллюстрирует возможности существенного снижения энергопотребления при внедрении регулируемых электроприводов насосов. Наилучшие технико-экономические показатели при регулировании скорости насосов обеспечивает система ПЧ-АД.

 

 

На рисунке б показана в относительных единицах n * = ni / n н и Н ст/ Н ф область значений КПД регулируемого насоса h i, ограниченная величинами h i = 0,5hн и h i = 0,1hн.

Здесь ni , n н - текущая и номинальная частота вращения насоса; Н ст и Н ф - геометрический подъем или противодавление и фиктивный напор насоса при нулевой подаче.

 

Из рисунка видно, что значения КПД зависят как от частоты вращения, так и текущих координат насоса, водовода и противодавления в сети.

 

 

На рисунке показано семейство кривых, отражающих зависимости относительных удельных затрат электроэнергии W * на перекачку единицы объема воды от относительной частоты вращения (ni / n н) насоса при различных значениях противодавления в сети.

 

Вначале при снижении частоты вращения от номинальных оборотов удельные затраты электроэнергии снижаются, а затем, когда экономия электроэнергии от снижения напора становится соизмерима с потерями от снижения КПД насоса, проявляется экстремум функции. В дальнейшем уменьшение частоты вращения приводит к резкому увеличению удельных затрат электроэнергии, и левый участок кривых уходит в бесконечность при стремлении КПД насоса к нулевому значению.

 

Так как системы водоподачи представляют собой динамические объекты с постоянно изменяющимися во времени рабочими параметрами, насосная установка может попасть в режим работы, при котором значения КПД окажутся слишком низкими (до 0,1). При некоторых условиях этот режим может быть длительным (до 3 - 5 ч. в сутки). Чтобы избежать такие режимы применяются технические решения, позволяющие удерживать регулируемые агрегаты от вхождения в зону низких начений КПД насоса.

 

 

На рисунке сопоставлены кривые требуемой мощности насосных приводов трех принципов управления. Как видно из рисунка при расходе в объеме 50% расчетного максимума требуемая мощность при дросселировании (кривая 1) составляет 73%, при использовании запорно-регулирующей арматуры (кривая 2)- только 50% номинальной, при регулировании частоты вращения электродвигателя (кривая 3) - всего 14% номинальной мощности.

 

Экономичность определяется не только энергетическими расходами, учитываются также шумы при регулировании. Рисунок показывает изменение уровня звукового давления (шумов) при

регулировке потока с тремя различными системами. Здесь: 1 - регулирование дросселем; 2 - использование запорно-регулирующей арматуры; 3 - регулирование частоты вращения электродвигателя.

 

 

Исходя из номинальной точки, показано увеличение давления звука для обеих механических систем, особенно в диапазоне частот нужного рабочего режима - от 40 до 80% проектного максимума. В этом случае при электрической регулировке частоты вращения электродвигателя уровень давления звука падает на 20 дБ(А). По сравнению с механической системой выигрыш составляет 20-30 дБ(А), благодаря чему для количественной оценки экономии электроэнергии и воды при внедрении регулируемого электропривода на одной из подкачивающих насосных станций холодного водоснабжения жилых зданий был установлен частотно-регулируемый электропривод, обеспечивающий постоянство напора на выходе насоса независимо от расхода, и произведены запись давления на входе и выходе насосной станции и замеры расхода электроэнергии и воды при работе в нерегулируемом и регулируемом режимах. Насос с номинальной подачей 100 м3/ч и расходы на шумоснижающие меры значительно уменьшаются

Для количественной оценки экономии электроэнергии и воды при внедрении регулируемого электропривода на одной из подкачивающих насосных станций холодного водоснабжения жилых зданий был установлен частотно-регулируемый электропривод, обеспечивающий постоянство напора на выходе насоса независимо от расхода, и произведены запись давления на входе и выходе насосной станции и замеры расхода электроэнергии и воды при работе в нерегулируемом и регулируемомрежимах. Насос с номинальной подачей 100 м3/ч и напором 32 м приводился во вращение асинхронным двигателем мощностью 15 кВт. Проведенные замеры показали, что за год экономия электроэнергии составляет 45457 кВт∙ч (40,5%), а экономия воды – 114135 м3 (25%).

 

При экономическом эффекте только за счет экономии электроэнергии стоимость электрического оборудования для регулирования частоты вращения электродвигателя окупается за год эксплуатации.

 

Предварительные расчеты показывают, что при широком внедрении частотно-регулируемых приводов можно сэкономить 7-10% вырабатываемой электроэнергии.

 

Появление регулируемого электропривода в насосных установках систем водоснабжения и водоотведения позволяет создать принципиально новую энергосберегающую технологию транспорта воды, в которой экономится не только электроэнергия, но и сберегается тепловая энергия и сокращается расход воды за счет утечек ее при

превышениях давления в магистрали, когда расход мал. При частотном регулировании насосов можно в значительной степени избежать аварийные ситуации за счет предотвращения гидравлических

ударов, возникающих при изменении режимов работы и пуске системы при нерегулируемом электроприводе.

 




Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 834; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.