КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Проблема обеспечения точности и достоверности результатов
Проблема обеспечения точности и достоверности результатов можно решить следующим образом. Обозначают точность оценки величиной Е. Из-за наличия стохастичности ограниченности числа опытов N получают оценку . Задаются неравенством (4.72) и вероятностью P, что неравенство (4.72) выполняется (4.73) где Q – называют достоверностью оценки. Вводят относительную точность оценки (4.74) с учетом которой достоверная оценка будет равна (4.75) Если известен закон распределения , то с помощью анализа формулы (4.73) или (4.75) можно определить количество реализаций N. В тех случаях, когда закон распределения найти не удается, то выдвигают предположение о характере закона распределения случайной величины Е. Рассмотрим взаимосвязь точности и достоверности, когда в качестве показателей эффективности Е, выступают вероятность Р, математическое ожидание а и дисперсия s2. Пусть вероятность появления некоторого события А, которое определяется состояниями процесса функционирования исследуемой системы, равна Р=Р(А) В качестве оценки вероятности Р в данном случае выступает где m - число положительных исходов. Тогда соотношение (4.73), связывающее точность и достоверность оценок с количеством реализаций, будет иметь вид (4.76) Для ответа на вопрос о законе распределения величины представим эту частность в виде так как количество наступлений события А в данной реализации из N реализаций является случайной величиной x, принимающей значения х1=1 с вероятностью Р и х2=0 с вероятностью (1-P). Математическое ожидание и дисперсия случайной величины x будут равны Тогда Это соотношение говорит о несмещенности оценки для вероятности Р. С учетом независимости значений величины получаем В силу центральной предельной теоремы теории вероятностей при достаточно больших N можно рассматривать частность как случайную величину, с нормальным законом распределения вероятностей с математическим ожиданием Р и дисперсией С учетом квантиля нормального распределения вероятностей точность оценки (4.77) Количество реализаций для получения оценки с точностью e и достоверностью будет равно (4.78) Квантиль порядка находится из специальных таблиц. Пример. Необходимо рассчитать количество реализаций N при статистическом моделировании системы S, когда в качестве показателя эффективности используется вероятность P при достоверности и точности Ввиду того, что значения P до проведения эксперимента неизвестны, то вычисляют множество оценок N для диапазона возможных значений P, т.е. от 0 до 1 с дискретностью 0.1. Результаты расчетов с использованием выражения (4.78) представлены в таблице 4.17. Из таблицы 4.17 видно, что при переходе от (0.9) и количество реализаций N возрастает примерно в 2,5 раза, а при переходе от и количество реализаций возрастает примерно в 25 раз. Таблица 4.17
При тактическом планировании машинных экспериментов, когда значение P неизвестно, поступают следующим образом. Берут произвольно значение N0, определяют по формуле а затем по формуле (4.78) проводят вычисления, в которой вместо P подставляют P0. Такая процедура оценки N может выполняться многократно. Если отсутствует возможность получения каких-либо априорных сведений о вероятности P, то в таких случаях целесообразно задавать относительную точность результатов моделирования . Для этих случаев формула (4.78) принимает вид (4.79) Оценку показателя эффективности Е модулируемой системы можно дать по результатам определения среднего значения некоторой случайной величины. Если случайная величина x имеет математическое ожидание а и дисперсию s2 и принимает в i -той реализации значение , то в качестве оценки математического ожидания а принимают При больших значениях N в силу предельной центральной теоремы теории вероятностей среднее арифметическое будет иметь распределение, близкое к нормальному с математическим ожиданием а и дисперсией . Точность оценки для математического ожидания равна а количество реализаций (4.80) Если же в качестве показателя эффективности Е выступает дисперсия s2, а в качестве ее оценки используется выборочная дисперсия S2, то математическое ожидание и дисперсия будут где – центральный момент четвертого порядка случайной величины. Для частного случая, когда случайная величина имеет нормальное распределение, когда получаем (4.81) Для дисперсии s2 точность оценки отсюда количество реализаций или . Из выражений (4.79¸4.81) видно, что количество реализаций существенно зависит от дисперсии оцениваемой случайной величины. Поэтому выгодно выбирать те оцениваемые показатели эффективности Е, которые имеют малые дисперсии.
Дата добавления: 2014-01-15; Просмотров: 650; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |