Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Интерпретация матрицы R

Рассмотрим, что представляет собой матрица R с точки зрения линейной алгебры. Оказывается, что матрица R содержит базис новой системы координат.

Действительно, матрица

(R11 R12 R13)

(R21 R22 R33)

(R31 R32 R33)

переводит вектора декартова базиса:

(1 0 0) → (R11 R21 R31)

(0 1 0) → (R12 R22 R32)

(0 0 1) → (R13 R23 R33)

Скос (сдвиг)

Исходный объект Скос (сдвиг)

Теперь несложно получить преобразование скоса. Например:

Прим. Если придерживаться общепринятой терминологии, то приведенное выше преобразование называется сдвигом. Сдвигом (shear) будет любое преобразование, главная диагональ матрицы R которого единичная. Если при этом определитель матрицы R равен нулю, то преобразование не является аффинным.

<== предыдущая лекция | следующая лекция ==>
Поворот вокруг осей x и z | Компьютер
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 621; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.