КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Геометрический смысл решений неравенств, уравнений и их систем
Теорема 1. Множество решений неравенства с двумя переменными а11х1 + а12х2 <= b1 является одной из двух полуплоскостей, на которые вся плоскость делится прямой а11х1 + а12х2 = b1, включая и эту прямую, а другая полуплоскость с той же прямой есть множество решений неравенства а11х1 + а12х2 >= b1. Пример: 3х1 – 4х2 + 12 <= 0 Для определения искомой полуплоскости (верхней или нижней) рекомендуется задать произвольную контрольную точку, не лежащую на ее границе – построенной прямой. Если неравенство выполняется в контрольной точке, то оно выполняется и во всех точках полуплоскости, содержащей контрольную точку, и не выполняется во всех точках другой полуплоскости. Учитывая, что множество точек, удовлетворяющих уравнению а11х1 + а12х2 +… + a1nxn = b1 при n=3 является плоскостью, а при n>3 – ее обобщением в n – мерном пространстве – гиперплоскостью, можно обобщить вышесформулированную теорему на случай трех и более переменных.
Теорема 2. Множество решений совместной системы m линейных неравенств с двумя переменными а11*Х1 + а12*Х2 <= В1 а21*Х1 + а22*Х2 <= В2 …………………………. аm1*Х1 + аm2*Х2 <= Вm
Дата добавления: 2014-01-15; Просмотров: 827; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |