![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Неравенство Чебышева. Известно, что нельзя заранее предвидеть, какое из возможных значений примет случайная величина в итоге эксперимента
Закон больших чисел Известно, что нельзя заранее предвидеть, какое из возможных значений примет случайная величина в итоге эксперимента, но при очень большом числе случайных явлений их результат практически перестает быть случайным и может быть предсказан с большой степенью определенности. Особенности случайного явления не оказывают влияния на средние результаты большого числа испытаний (эти особенности взаимно погашаются). Частота появления события, среднее арифметическое и статистическая дисперсия обладают удивительной устойчивостью при большом числе испытаний. Поэтому становится возможным предсказание средних результатов случайных явлений почти с полной достоверностью. Для практики очень важно знание условий, при выполнении которых совокупное действие случайных причин приводит к результату, почти не зависящему от случая. Эти условия и указываются в теоремах и неравенствах, носящих общее название закона больших чисел. Для любой случайной величины (дискретной или непрерывной, распределенной по любому закону с математическим ожиданием
Или
Доказательство. Докажем справедливость неравенства (21) для непрерывной случайной величины. Из определения вероятности
Отсюда Неравенство Чебышева (22) не позволяет найти вероятность случайной величине отклониться по абсолютной величине от своего математического ожидания на величину, большую Следствие из неравенства Чебышева. Если
Дата добавления: 2014-01-15; Просмотров: 470; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |