Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Соподчиненность уровней ЭС


Конструкционная система ЭС (КС ЭС) – совокупность уровней, организованная в определенной соподчиненности на основе единого размерного модуля и единой технологии производства с учетом функциональных, механических и тепловых факторов, а также требований технической эстетики.

В качестве основополагающего стандарта, определяющего размеры стационарных, возимых и морских ЭС, выступает ГОСТ 20504-81. «Система унифицированных типовых конструкций агрегатных комплексов ГСП. Типы и основные размеры», разработанный на основе стандарта Международной электротехнической комиссии МСМЭК 297-1.Данный стандарт соответствует иерархическому построению конструкций РЭС, принятому в ГОСТ26632-85 «Уровни разукрупнения радиоэлектронных средств по функционально-конструктивной сложности. Термины и определения».

Иерархическую соподчиненность структурных уровней ЭС можно представить рисунком 5.1. Как видно из рисунка 5.1 конструктивное построение ЭС содержит:

Нулевой структурный уровень – состоит из ЭРЭ, ИС,БИС, приобретаемых разработчиком ЭС как покупные изделия.

Первый структурный уровень- включает в себя объемные модули, микромодули и МСБ.

Второй структурный уровень – образует функциональные узлы (ФЯ), т. е конструктивно и функционально законченные сборочные единицы, состоящие из компонентов, модулей, ИС, устанавливаемых на ПП.

К третьему структурному уровню – относятся блоки, представляющие собой функционально и конструктивно законченную сборочную единицу, состоящую из деталей и ФУ, объединенных крепежом и электрическим монтажом.

Четвертый структурный уровень – представляет собой ЭС, т. е конструктивно и функционально законченное изделие, которое в отличие от изделия других уровней имеет самостоятельное эксплуатационное назначение.

ЭС состоят из блоков, объединенных стойкой, шкафом или стеллажом. Стойки и стеллажи могут объединятся в сложные электронные комплексы. Комплексы представляют из себя два и более электронных изделий, не оформленные конструктивно в единое целое, но неразрывно связанных между собой функционально.

Конструкции блоков, стоек, шкафов и другие БНК разработаны и выпускаются применительно к конкретным условиям эксплуатации.

По применяемым конструкциям блоков различают семь видов аппаратуры:


  1. стационарные ЭВМ;

  2. аппаратура дискретной автоматики;

  3. стационарная аппаратура (кроме ЭВМ);

  4. аппаратура, предназначенная для размещения на носителях, имеющих колесный ход;

  5. то же, на гусеничном ходу;

  6. морская аппаратура;


7) самолетная и вертолетная аппаратура;

Внутри каждого вида проведена унификация базовых НК высших структурных уровней.

Всего в мире существует свыше двадцати различных КС, отличающихся конструкторской реализацией и обеспечивающих конструктивную и электрическую стыковку электронных модулей различного уровня, унификацию элементов несущих конструкций.

Причины множества КС:


  1. узковедомственные интересы отраслей;

  2. попытка увязать отечественные и зарубежные стандарты в той области.


Как в ВТ, так и РЭА наибольшее распространение, получил функциональ-но-узловой и функционально-модульный принцип построения, заключающийся в разбиении конструкции той или иной системы на конструктивно – технологические единицы, составляющие некоторую конструктивную иерархию, причем законченные функциональные устройства оформляются в виде элементов иерархии.

Конструктивная иерархия ЭС строится по принципу cложности, т.е включения более простого, нижнего уровня в состав более сложного, высшего уровня.

Каждый уровень характеризуется следующими чертами: единым функциональным назначением изделий, соответствующих данному уровню, определенными границами развития типоразмеров изделий в пространстве, определенной номенклатурой, наличием единых способов механических и электрических связей одного уровня с изделиями других уровней, восходящий применяемостью без каких-либо доработок. Добиваются того, чтобы каждому уровню были присущи отмеченные характеристики, обозначения, четкие граничные плоскости между уровнями по механическим, электрическим связям, выбирая единый размерный модуль, назначая основные и присоединительные размеры, а также предельные отклонения на размеры, обеспечивающие применение, принимая одинаковые размеры граничных изделий соседних уровней.


5.2. Основные виды конструкционных систем


Виды КС:


САМАС- нашла применение в научной аппаратуре, а также аппаратуре, предназначенной для систем и комплексов с изменяемой в процессе эксплуатации структурой.

САМАС содержит крейты и вставные блоки. Крейт содержит не более 25 станций для встраивания вставных блоков, расположенных с шагом 17,2 max.

Система содержит:


  1. Требования к конструкциям и размерам.

  2. Требования к магистрали крейта.

  3. Команды на магистрали крейта.

  4. Требования и характеристики сигналов магистрали крейта и вставных блоков.

  5. Требования к теоретическим характеристикам.


Из приведенных требований к КС видно, что в сравнении с БНК свойства КС намного шире.

Линии связи между блоками необходимо группировать в совокупность упорядоченных каналов- шины. По функциональному назначению шины делятся на: ввода-вывода (ВВ), доступа к ячейкам памяти (шина ЗУ); внутренней обработки данных; разводки питания и “земли” (Соответственно шины А, В,С, Д), а БНК способствуют креплению, размещению, защите от тепло-вых нагрузок, электромагнитных полей и т.д.

ES-902 – разработана на основе стандартов DIN и международной электротехнической комиссией (МЭК) и включает в себя два основных типоразмера печатных плат“C” и “F“ и два соответствующих им типоразмерам комплексных корпусов.

Шаг расположения частичных корпусов (ячеек) 12,5мм позволяет иметь в проеме комплексного корпуса (L= 426.72 мм) 28 мест.

INTERMAS- современная, универсальная вариантная КС, обещающая требованиям высокой плотности монтажа, рационального производства и автоматизированной механической сборки и электромонтажа, применяемая как в серийном производстве, так и при индивидуальном изготовлении отдельных приборов. Более развитая структура, чем у ES-902. Общим решением для КС ES-902 иINTERMAS является единый размерный модуль-2,54 (5,08) мм.

“НАДЕЛ-85”- система, служащая для построения электронных измерительных приборов или соответствующих им по сложности РЭС, работающих как при стационарном размещении, так и в подвижном (закрытые кузова автомобилей, закрытые помещения судов).

Состав системы “Надел-85” показан на рис. 5.2.

Основные размеры корпусов блоков представлены в таблицах 5.1 …5.3.

Для размещения устройств вычислительной техники используются системы несущих конструкций как на базе ГОСТ 20504-81, так и на базе ГОСТ 25122-82, ГОСТ 26.202-84 “Средства измерения и автоматизации. Панели и стойки.”, СТ СЭВ 834-77 “Приборы и средства автоматизации. Панели и стойки.”, международного стандарта МЭК 48Д.

Конструкционная система МЭК 48Д включает в себя частичные каркасы (в движение, стационарные, поворотные) автономных комплектных блоков встраиваемого и приборного исполненния.


Рис. 5.2 Конструкционная система электронных приборов:

1 – малогабаритный агрегатируемый корпус;

2 – настольно-стоечный корпус;

3- вставной блок;

4 – малогабаритный осциллографический корпус;

5 – малогабаритный неагрегатируемый корпус;

6 – настольно-переносной корпус;

7- агрегатирование настольно-переносных корпусов по вертикали;

8 – варианты конструкций настольных осциллографических блоков;

9 - агрегатирование по ширине;

10 – стоечное исполнение базового корпуса;

11 – установка вставных блоков и осциллографа;

12 – стоечный вариант конструкции с рамой;

13 – установка стоечных блоков в шкаф.


Таблица 5.1


Размеры полногабаритных настольно-переносных корпусов БНК “Надел-85”

Высота Н, мм Длина L, мм Глубина B, мм
80 100 120 160 200 240 280 480 280 340 420 500

 


Таблица 5.2


Размеры малогабаритных настольно-переносных корпусов БНК “Надел-85”

Высота Н, мм Длина L, мм Глубина B, мм
80 100 120 160 200 240 120 180 240 300 360 180 260 340 420 500

 


Таблица 5.3


Размеры модульных вставных блоков (субблоков) для установки в базовые корпуса БНК “Надел-85”

Высота Н, мм Длина L, мм Глубина B, мм
120 160 200 260 340 420 80 100 120 160 200

 

<== предыдущая лекция | следующая лекция ==>
ФЯ МЭА IV поколения | Теорема о ранге. Ранг матрицы соответствует количеству её линейно независимых строк, или столбцов
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 527; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.