КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Принципы кодирования информации в нервной системе
ПСИХОФИЗИОЛОГИЧЕСКОЕ ИЗУЧЕНИЕ ПСИХИЧЕСКИХ ПРОЦЕССОВ И СОСТОЯНИЙ ТЕРМОЭНЦЕФАЛОСКОПИЯ Данным методом измеряют локальный метаболизм мозга и кро-воток по теплопродукции. Мозг излучает теплолучи в инфракрасном диапазоне. Водяные пары воздуха задерживают значительную часть этого излучения. Но есть два диапазона частотот (3-5 и 8— 14 мкм), в которых тепловые лучи распространяются в атмосфере на огромные расстояния и поэтому могут быть зарегистрированы. Этот метод разработан в Институте высшей нервной деятельности и нейрофизиологии РАН и Институте радиоэлектроники (Шевелёв И.А. и др., 1989). Инфракрасное излучение мозга улавливается на расстоянии от нескольких сантиметров до метра термовизором с автоматической системой сканирования. Сигналы попадают на точечные датчики. Каждая термокарта содержит 10-16 тысяч дискретных точек, образующих матрицу 128х85 или 128х128 точек. Процедура измерений в одной точке длится 2,4 мкс. В работающем мозге температура отдельных участков непрерывно меняется. Построение термокарты дает временной срез метаболической активности мозга. При получении термокарт мозга обезьяны видеокамеру помещают над поверхностью коры, на которую предварительно наносят краситель, генерирующий инфракрасное излучение в зависимости от активности мозга. Метод фоторезисторов и красителей применяют и при изучении нервной системы моллюска. При этом вместе с оптическим сигналом регистрируется электрическая активность нейронов. Существует единая методология применения томографии для изучения высших психических функций мозга. Она предполагает процедуру вычитания карты активности мозга, полученной во время выполнения менее сложной когнитивной операции, из карты активности, соответствующей более сложной психической функции. Данная процедура применима и для обработки данных, извлекаемых методом картирования мозга по параметрам ЭЭГ. Это особенно ценно при объединении двух методов анализа: ПЭТ и ЭЭГ, МРТ и ЭЭГ — новая тенденция, которая наметилась в использовании данных методов. Часть II Глава 3 Интенсивное изучение активности нейронов мозга у неанестезированных животных, начавшееся в 50-х годах, неизбежно поставило вопрос о способах кодирования нейронами информации о внешнем мире. Сегодня можно говорить о нескольких принципах кодирования в нейронных сетях. Одни из них достаточно просты и характерны для периферического уровня обработки информации, другие — более сложны и характеризуют передачу информации на более высоких уровнях нервной системы, включая кору. В процессе эволюции принципы кодирования более высокого уровня начинают преобладать над более примитивными. Одним из простых способов кодирования информации признается специфичность рецепторов, избирательно реагирующих на определенные параметры стимуляции, например колбочки с разной чувствительностью к длинам волн видимого спектра, рецепторы давления, болевые, тактильные и др. В работах Т. Буллока (1965) и В. Маунткастла (1967) принцип специфичности получил дальнейшее развитие. Они предложили говорить о меченой линии как о моносинаптической передаче сигналов от рецептора к некоторому центральному нейрону, возбуждение которого соответствует выделению определенного качества стимула (Сомьен Дж., 1975). Для каждой модальности эволюция нашла свое более адекватное решение проблемы передачи информации. Так, модель меченой линии более подходит к чувствительным окончаниям кожи, которые высокоспецифичны относительно небольшого количества типов раздражений (рецепторы давления, прикосновения, температуры, боли). Это соответственно требует малого числа меченых линий. Другой способ передачи информации получил название частотного кода. Наиболее явно он связан с кодированием интенсивности раздражения. Для многих периферических нервных волокон была установлена логарифмическая зависимость между интенсивностью раздражителя и частотой вызываемых им ПД. Она выявлена для частоты импульсов в одиночном волокне зрительного нерва, идущего от одного омматидия мечехвоста (Limulus), и интенсивности света; для частоты спайков веретена — рецептора мышцы лягушки и величины нагрузки на мышцу. Частотный способ кодирования информации об интенсивности стимула, включающего операцию логарифмирования, согласуется с психофизическим законом Г. Фехнера о том, что величина ощущения пропорциональна логарифму интенсивности раздражителя. Однако позже закон Фехнера был подвергнут серьезной критике. С. Стивене на основании своих психофизических исследований, проведенных на людях с применением звукового, светового и электрического раздражения, взамен закона Фехнера предложил закон степенной функции. Этот закон гласит, что ощущение пропорционально показателю степени стимула, при этом закон Фехнера представляет лишь частный случай степенной зависимости. Закон степенной функции получил сильную эмпирическую поддержку при изучении электрической активности многих сенсорных элементов. Так, частота ПД ганглиозных клеток сетчатки лягушки, реагирующих на скорость движения, находится в степенной зависимости от угловой скорости стимула. Степенной функции подчиняются отношения между частотой импульсации, идущей от медленно адаптирующихся кожных рецепторов, и силой надавливания. В то же время в других опытах получены данные, не Соответствующие ни логарифмической, ни степенной зависимости. В слуховых и вкусовых сенсорных волокнах зависимость частоты импульсов от интенсивности описывается S-образной функцией. Пытаясь примирить S-образные зависимости, небольшое число твердо установленных логарифмических функций с массой фактов, подтверждающих закон степенной зависимости Стивенса, исследователи высказывают предположение, что степенные зависимости между стимулом и реакцией возникают на более высоких уровнях сенсорных систем, сменяя другие типы отношений, представленные на периферии (Тамар Г., 1976). Другое объяснение связано с уточнением роли числа нервных волокон в передаче информации с помощью частотного кода. >1 30 Анализ передачи сигнала о вибрации от соматических рецепторов показал, что информация о частоте вибрации передается с помощью частоты ПД, а ее интенсивность кодируется числом одновременно активных рецепторов. По мнению Р. Гранита (1957), число активированных волокон является важным фактором в механизме интерпретации частотного кода. Он полагает, что интенсивность не может быть передана с помощью только одной частоты импульсов. Необходимо учитывать не отдельную единицу, а скорее активность статистических комплексов. Поэтому, несмотря на значительное взаимодействие в сетчатке и последующую трансформацию сигналов на более высоких уровнях нервной системы, информация об интенсивности может кодироваться частотным кодом, но только на статистической основе, через группу одновременно возбужденных волокон. В качестве альтернативного механизма к первым двум принципам кодирования — меченой линии и частотного кода — рассматривают также паттерн ответа нейрона (структурную организацию ПД во времени). Устойчивость временного паттерна ответа — отличительная черта нейронов специфической системы мозга, Система передачи информации о стимулах с помощью рисунка разрядов нейрона имеет ряд ограничений. В нейронных сетях, работающих по этому коду, не может соблюдаться принцип экономии, так как он требует дополнительных операций и времени по учету начала, конца реакции нейрона, определения ее длительности. Кроме того, эффективность передачи информации о сигнале существенно зависит от состояния нейрона, что делает данную систему кодирования недостаточно надежной. На роль ансамбля нейронов в кодировании информации указал Д. Хебб. Он считает, что ни один нейрон не может пересылать никакой информации другим нейронам и что она передается исключительно через возбуждение группы нейронов, входящих в состав соответствующих ансамблей. Д. Хебб предложил рассматривать ансамбль нейронов в качестве основного способа кодирования и передачи информации. Различные наборы возбужденных нейронов одного и того же ансамбля соответствуют разным параметрам стимула, а если ансамбль находится на выходе системы, управляющей движением, — то и разным реакциям. Данный способ кодирования имеет ряд преимуществ. Он более надежен, так как не зависит от состояния одного нейрона. К тому же не требует дополнительно ни операций, ни времени. Однако для кодирования каждого типа стимулов необходим свой уникальный набор нейронов. Особый принцип обработки информации вытекает из детекторной теории. Он получил название принципа кодирования информа- ции номером детектора (детекторного канала). Передача информации по номеру канала (термин предложен Е.Н. Соколовым) означает, что сигнал следует по цепочке нейронов, конечное звено которой представлено нейроном-детектором простых или сложных признаков, избирательно реагирующим на определенный физический признак или их комплекс. Идея о том, что информация кодируется номером канала, присутствовала уже в опытах И. П. Павлова с кожным анализатором собаки. Вырабатывая условные рефлексы на раздражение разных участков кожи лапы через «касалки», он установил наличие в коре больших полушарий соматотопической проекции. Раздражение определенного участка кожи вызывало очаг возбуждения в определенном локусе соматосенсорной коры. Пространственное соответствие места приложения стимула и локуса возбуждения в коре получило подтверждение и в других анализаторах: зрительном, слуховом. Тонотопическая проекция в слуховой коре отражает пространственное расположение волосковых клеток кортиевого органа, избирательно чувствительных к различной частоте звуковых колебаний. Такого рода проекции можно объяснить тем, что ре-цепторная поверхность отображается на карте коры посредством множества параллельных каналов — линий, имеющих свои номера. При смещении сигнала относительно рецепторной поверхности максимум возбуждения перемещается по элементам карты коры. Сам же элемент карты представляет локальный детектор, избирательно отвечающий на раздражение определенного участка рецепторной поверхности. Детекторы локальности, обладающие точечными рецептивными полями и избирательно реагирующие на прикосновение к определенной точке кожи, являются наиболее простыми детекторами. Совокупность детекторов локальности обт разует карту кожной поверхности в коре. Детекторы работают параллельно, каждая точка кожной поверхности представлена независимым детектором. Сходный механизм передачи сигнала о стимулах действует и тогда, когда стимулы различаются не местом приложения, а другими признаками. Появление локуса возбуждения на детекторной карте зависит от параметров стимула. С их изменением локус возбуждения на карте смещается. Для объяснения организации нейронной сети, работающей как детекторная система, Е.Н. Соколов предложил механизм векторного кодирования сигнала. Принцип векторного кодирования информации впервые был сформулирован в 50-х годах шведским ученым Г. Йохансоном, который и положил начало новому направлению в психологии — векторной психологии. Г. Йохансон основывался на результатах 32 детального изучения восприятия движения. Он показал, что если две точки на экране движутся навстречу друг другу — одна по горизонтали, другая по вертикали, — то человек видит движение одной точки по наклонной прямой. Для объяснения эффекта иллюзии движения Г. Йохансон использовал векторное представление. Движение точки рассматривается им как результат формирования двухкомпонентного вектора, отражающего действие двух независимых факторов (движения в горизонтальном и вертикальном направлениях). В дальнейшем векторная модель была распространена им на восприятие движений корпуса и конечностей человека, а также на движение объектов в трехмерном пространстве. Е.Н Соколов развил векторные представления, применив их к изучению нейронных механизмов сенсорных процессов, а также двигательных и вегетативных реакций. Векторная психофизиология — новое направление, ориентированное на соединение психологических явлений и процессов с векторным кодированием информации в нейронных сетях. Глава 4 ВОСПРИЯТИЕ
Дата добавления: 2014-01-15; Просмотров: 716; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |