Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Винтовые поверхности. Принадлежность т-ки поверхности

Принадлежность т-ки поверхности.

Теорема.: Т-ка принадлежит поверхности, если она лежит на линии, принадлежащей данной поверхности.

Задача 2. Построить очерк и каркас поверхности, заданной определителем Σ (m, n, П1), m и n – направляющие, П1 –пл-ть параллелизма.

Решение:

Исходя из определителя Σ (m, n, П1), все образующие должны быть || П1.

 

 

 

Винтовые поверхности образуются при сложном винтовом движении прямой образующей, когда каждая т-ка этой образующей вращается вокруг неподвижной оси, а один конец этой образующей равномерно перемещается по этой оси. Т.е. это совокупность 2-х движений образующей – поступательного перемещения вдоль оси поверхности и вращательного вокруг оси.

Определитель поверхности:

Σ (ℓ, i, H, φ), где ℓ – образующая; i – ось; Н – шаг винтовой линий; φ - угол наклона образующей к оси.

Поверхность, образованная при вращательном поступательном движении прямой образующей, наз-ся геликоидом. В зависимости от угла наклона образующей к оси геликоид может быть прямой (φ = 900) и наклонный (φ ≠ 900). Если образующая пересекается с осью поверхности, геликоид называют закрытым (б), если не пересекается – открытым (а). (Поверхность пандусов многоэтажных гаражей и некоторых других зданий представляет собой прямой открытый геликоид).

 

 

Открытый геликоид Закрытый геликоид

Лекция 7

<== предыдущая лекция | следующая лекция ==>
Линейчатые поверхности | Поверхности вращения (ротационные)
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1294; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.