Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определитель Вандермонда




Вычисление определителей произвольных порядков

Преобразованиями, описанными в разделе 5.1, приводим определитель к треугольному виду. Далее, определитель равен произведению диагональных элементов.

Приведём пример вычисления определителя матрицы . Вычтем из каждой строки предыдущую (начиная с последней строки). В результате получим треугольную матрицу, по диагонали которой стоят 1. Определитель равен 1.

Пусть даны числа . Матрицей Вандермонда называется матрица, у которой на пересечении i-го столбца и j-ой строки расположен элемент, равный . Обозначим через матрицу Вандермонда. Определитель матрицы Вандермонда является многочленом от , т.к. . Рассмотрим определитель как многочлен от . Степень этого многочлена равна n-1, а его корни равны (т.к. определитель матрицы с двумя одинаковыми строками равен нулю). Следовательно, , где q – коэффициент при старшей степени. Легко убедиться, что . Таким образом получена рекуррентная формула , последовательным применением которой придём к равенству .




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1797; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.