КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Резонанс напряжений и резонанс токов
Вынужденные электрические колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
Для получения незатухающих колебаний нужно непрерывно пополнять энергию контура от внешнего источника, оказывая на него внешнее периодически изменяющееся воздействие, например, включив последовательно с элементами контура переменную э.д.с. (Е = Е0cosωt)или, разорвав контур, подавать на образовавшиеся контакты переменное напряжение (U = Um cosωt). Колебания, возникающие в CLR-цепочке при наличии переменной э.д.с., называются вынужденными. Эту э.д.с. нужно прибавить к э.д.с. самоиндукции, в результате уравнение (3) из предыдущей темы примет вид
Ld2q/dt2 +Rdq/dt + q/C = Е0cosωt. (1)
Вынужденные колебания электрического заряда в цепи контура определяются частным решением этого неоднородного уравнения. Это частное решение имеет вид
q = qmcos(ωt - ψ), (2)
где ψ – сдвиг фаз между внешней э.д.с. и напряжением (зарядом) на конденсаторе, а tg ψ = R/(1/ωC –ωL). Установившиеся вынужденные колебания описываются функцией(2). Продифференцировав выражение (2) по переменной t, получим выражение для силы тока в контуре при установившихся колебаниях
I = - ωqm sin(ω0t - ψ) = Im cos(ω0t - ψ + π/2).
Это выражение можно записать в виде
I = Im cos(ωt - φ), (3) где φ = ψ – π/2 – сдвиг по фазе между током и приложенной э.д.с., а
tgφ = tg(ψ – π/2) = - 1/tgψ = (ωL -1/ωC)/R. (4)
Im = E 0/√R2 + (ωL – 1/ωC)2, где RL = ωL – реактивное индуктивное сопротивление, RC = 1/ωC – реактивное емкостное сопротивление, Х = ωL – 1/ωC – реактивное сопротивление, Z = √R2 + (ωL – 1/ωC)2 – полное сопротивление цепи. (4а) Разделив выражение (2) на емкость, получим напряжение на конденсаторе
UC = (qm/C) cos(ωt - ψ) = UCmcos(ωt – φ –π/2), (5) где UCm = qm/C = Um/ωC√ R2 + (ωL – 1/ωC)2 = Im/ωC. (6)
Умножив производную функции (3) на индуктивность L, получим напряжение на индуктивности
UL = L(dI/dt) = - ωLImsin(ωt – φ) = ULmcos(ωt – φ + π/2), (7)
где ULm = ωLIm. Сравнивая (3), (5) и (7) видим, что напряжение на емкости отстает по фазе от силы тока на π/2, а напряжение на индуктивности опережает ток на π/2. Напряжение на активном сопротивлении изменяется в фазе с током.
Резонанс напряжений. В цепи переменного тока, с последовательно включенными L, C и R, полное сопротивление контура имеет минимальное значение Zmin = R, если ωL = 1/ωC. В этом случае ток в цепи определяется этим сопротивлением, принимая максимальные значения (возможные при данном Um), что свидетельствует о наличии резонансной частоты ωрез для тока, значение которой определяется по условию ωL = 1/ωC, откуда ωрез = 1/√LC = ω0, (8) т.е. резонансная частота для силы тока равна частоте собственных колебаний в контуре. Напряжение на R равно внешнему напряжению, приложенному к цепи (UR =U). Это явление называется резонансом напряжений (последовательным резонансом) – резкое возрастание амплитуды силы тока в контуре с последовательно включенными L, C, R и Е при ωрез = 1/√LC = ω0. I0 Im 0,7·Im рез= Im рез/√2
ω1 ωрез ω2 ω Рис.1. Δω = ω2 – ω1. В случае резонанса напряжений (UL)рез = (UС)рез. Подставив в эту формулу значения резонансной частоты (8) и амплитуды напряжений на катушке индуктивности и конденсаторе (6), (7), получим
(UL)рез = (UС)рез = Im √L/C = (Um/R)√L/C = QUm, (9)
где Q – добротность контура. Добротность контура определяет остроту резонансных кривых. Так как Q обычных колебательных контуров больше единицы, то (UL)рез = (UС)рез > Е, т.е. добротность показывает, во сколько раз напряжение на конденсаторе (катушке) больше напряжения приложенного к цепи. Поэтому явление резонанса напряжений используется в технике для усиления колебания напряжения какой-либо определенной частоты, выделения из многих сигналов одного колебания определенной ν. Можно показать, что Δω/ωрез = 1/ Q – (10) относительная полуширина резонансной кривой. При резонансной частоте сдвиг фаз φ между током и напряжением обращается в нуль (φ=0), т.е. изменения тока и напряжения происходят синфазно колебаниям внешней э.д.с.:
Е = E0 cos ωрезt, Iрез = (E0 /R)cos ωрезt, I0max = E0 /R. Резонанс токов. Рассмотрим цепь переменного тока, содержащую параллельно включенные L и С, R = 0. I1 C I 1 2 I2 L ~U Рис.2. Если приложенное напряжение изменяется по закону U =Umcosωt, то в ветви 1С2 течет ток I1 = Im1cos(ωt–φ1), φ1 = (2n+3/2)π, n=1, 2, 3,... (11) амплитуда которого при условии L = 0 и R = 0: Im1 = Um/(1/ωC). Аналогично, сила тока в цепи 1L2 I2 = Im2cos(ωt–φ2), φ2 = (2n+1/2)π, n=1, 2, 3,... (12) амплитуда которого при условии R = 0 и С=∞ (условие отсутствия емкости в цепи): Im2 = Um/(ωL). Cравнив (11) и (12) видим, что φ2 - φ1 =π, т.е. токи в ветвях противоположны по фазе. Амплитуда тока во внешней (неразветвленной) цепи Im = | Im1 - Im2 |= Um|ωC – 1/(ωL)|. Если ω = ωрез = 1/√(LС), то Im1 = Im2 и Im = 0. Явление резкого уменьшения амплитуды силы тока во внешней цепи, питающей параллельно включенные конденсатор и катушку индуктивности, при приближении частоты ω приложенного напряжения к резонансной частоте ωрез называется резонансом токов (параллельным резонансом). Амплитуда тока оказалась равной нулю, так как считали, что активное сопротивление контура R = 0. При R ≠ 0 разность фаз φ2 - φ1 ≠ π, поэтому Im ≠ 0 и сила тока I в подводящих проводах примет наименьшее возможное значение, обусловленное только током через резистор. При резонансе токов силы токов I1 и I2 могут значительно превышать силу тока I. Рассмотренный контур оказывает большое сопротивление переменному току с частотой, близкой к резонансной. Поэтому его свойства используются в резонансных усилителях, позволяющих выделить одно определенное колебание из сигнала сложной формы.
Дата добавления: 2014-01-20; Просмотров: 842; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |