КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Требования к достоверности контрольной и управляющей информации согласно ГОСТ 26.205-83
По величине показателя достоверности, которым служит вероятность искажения различных типов сообщений, системы телемеханики разделяются на три категории, причём наибольшие требования предъявляются к телемеханическим системам первой категории, наименьшие – к системам третьей категории. Характеристики табл. 7.1 используются при проектировании телемеханических систем. 7.5. ПОМЕХОУСТОЙЧИВОСТЬ ПЕРЕДАЧИ КОДОВЫХ КОМБИНАЦИЙ ПРИ НЕЗАВИСИМЫХ ОШИБКАХ Расчет помехоустойчивости передачи различных кодовых комбинаций является большой и самостоятельной темой. Рассмотрим лишь расчет трансформаций, т.е. перехода одной кодовой комбинации в другую [6]. Расчет вероятности трансформаций для несимметричного канала с независимыми ошибками. В этом случае при расчетах можно придерживаться положений, вытекающих из теорем теории вероятностей. Теорема первая. Если в двоичном канале заданы вероятности двух переходов, то вероятности двух других переходов могут быть найдены на основе теоремы о полной группе событий; Теорема вторая. Вероятность того, что одна кодовая комбинация перейдет в другую, равна произведению вероятностей переходов ошибок каждого символа. Например, передана комбинация 11011. Вероятность того, что под воздействием помех эта комбинация исказится и вместо нее будет принята, например, комбинация 10101, рассчитывают таким образом. В старшем (пятом) и в первом (младшем) разрядах единицы приняты правильно: (1®1) и (1®1). В четвертом и во втором разрядах единицы подавлены помехами и трансформировались в нули, т.е. 1®0 и 1®0. В третьем разряде 0 перешёл в 1, т.е. 0®1. В результате получаем вероятность перехода комбинации 11011 в комбинацию 10101: Р (11011®10101) = P11P10P01P10P11. Если необходимо находить вероятности возникновения обнаруженных и необнаруженных ошибок или нескольких ошибок при передаче сообщения, то пользуются указанными теоремами.
Дата добавления: 2014-01-20; Просмотров: 343; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |