КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Целесообразность введения числовой характеристики рассеяния случайной величины
ДИСПЕРСИЯ ДИСКРЕТНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Математическое ожидание числа появлений события в независимых испытаниях Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А постоянна и равна р. Чему равно среднее число появлений события А в этих испытаниях? Ответ на этот вопрос дает следующая теорема. Теорема. Математическое ожидание М (X) числа появлений события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании: М (X) = nр. Доказательство. Будем рассматривать в качестве случайной величины X число наступления события А в n независимых испытаниях. Очевидно, общее число X появлений события А в этих испытаниях складывается из чисел появлений события в отдельных испытаниях. Поэтому если Х 1 – число появлений события в первом испытании, Х 2 – во втором,..., Хn – в n -м, то общее число появлений события X = Х 1 + Х 2 +... + Хn. По третьему свойству математического ожидания, М (X) = М (Х 1) + М (Х 2) +...+ М (Хn). (6.5) Каждое из слагаемых правой части равенства есть математическое ожидание числа появлений события в одном испытании: М (Х 1) – в первом, М (Х 2) – во втором и т. д. Так как математическое ожидание числа появлений события в одном испытании равно вероятности события, то М (Х 1) = М (Х 2) =...= М (Хn) = p. Подставляя в правую часть равенства (6.5) вместо каждого слагаемого р, получим М (X) = nр. (6.6) Замечание. Так как величина X распределена по биномиальному закону, то доказанную теорему можно сформулировать и так: математическое ожидание биномиального распределения с параметрами n и р равно произведению nр. Пример. Вероятность попадания в цель при стрельбе из орудия p = 0,6. Найти математическое ожидание общего числа попаданий, если будет произведено 10 выстрелов. Решение. Попадание при каждом выстреле не зависит от исходов других выстрелов, поэтому рассматриваемые события независимы и, следовательно, искомое математическое ожидание М (X) = nр = 10×0,6 = 6 (попаданий).
Легко указать такие случайные величины, которые имеют одинаковые математические ожидания, но различные возможные значения. Рассмотрим, например, дискретные случайные величины X и Y, заданные следующими законами распределения:
Найдем математические ожидания этих величин: М (Х) = – 0,01×0,5 + 0,01×0,5 = 0, М (Y) = – 100×0,5 + 100×0,5 = 0. Здесь математические ожидания обеих величин одинаковы, а возможные значения различны, причем X имеет возможные значения, близкие к математическому ожиданию, а Y – далекие от своего математического ожидания. Таким образом, зная лишь математическое ожидание случайной величины, еще нельзя судить ни о том, какие возможные значения она может принимать, ни о том, как они рассеяны вокруг математического ожидания. Другими словами, математическое ожидание полностью случайную величину не характеризует. По этой причине наряду с математическим ожиданием вводят и другие числовые характеристики. Так, например, для того чтобы оценить, как рассеяны возможные значения случайной величины вокруг ее математического ожидания, пользуются, в частности, числовой характеристикой, которую называют дисперсией. Прежде чем перейти к определению и свойствам дисперсии, введем понятие отклонения случайной величины от ее математического ожидания.
Дата добавления: 2014-01-20; Просмотров: 688; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |