Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Реологические свойства крови


Гемореология - наука, изучающая поведение крови при течении (в по­токе), то есть свойства потока крови и ее компонентов, а также реологию структур клеточной мембраны форменных элементов крови, прежде всего эритроцитов.

Реологические свойства крови определяются вязкостью цельной крови и ее плазмы, способностью эритроцитов к агрегации и деформации их мембран.

Кровь представляет собой негомогенную вязкую жидкость. Ее негомогенность обусловлена суспензированными в ней клетками, обладающими определенными способностями к деформации и агрегации.

В нормальных физиологических условиях в ламинарном кровотоке жидкость движется слоями, параллельными стенке сосуда. Вязкость крови, как и любой жидкости, определяется феноменом трения между соседними слоями, в результате которого слои, находящиеся возле сосудистой стенки, движутся мед­леннее, чем таковые в центре кровотока. Это приводит к формированию параболического профиля скорости, неодинакового при систоле и диастоле сердца.

В связи с указанным, величина внутреннего трения или свойство жидкости оказывать сопротивление при перемещении слоев называется вязкостью. Единица измерения вязкости - пуаз.

Из этого определения строго следует, что чем больше вязкость, тем больше должна быть сила напряжения, необходимая для создания коэффи­циента трения или движения потока.

В простых жидкостях, чем больше сила, приложенная к ним, тем больше скорость, то есть сила напряжения пропорциональна коэффициенту трения, а вязкость жидкости остается величиной постоянной.

Основными факторами, которые определяют вязкость цельной крови являются:

1) агрегация и деформируемость эритроцитов; 2) величина гематокрита — повышение показателя гематокрита, как правило, сопровождается увеличением вязкости крови; 3) концентрация фибриногена, растворимых комплексов фибринмономера и продуктов деградации фибри­на/фибриногена - повышение их содержания в крови увеличивает ее вяз­кость; 4) соотношение альбумин/фибриноген и соотношение альбу­мин/глобулин - снижение данных соотношений сопровождается повышением вязкости крови; 5) содержание циркулирующих иммунных комплек­сов - при повышении их уровня в крови вязкость возрастает; 6) геометрия сосудистого русла.



Однако кровь не имеет фиксированной вязкости, поскольку является «неньютоновской» (несжимаемой) жидкостью, что определяется её негомогенностью за счет суспензирования в ней форменных элементов, которые изменяют картину течения жидкой фазы (плазмы) крови, искривляя и запу­тывая линии тока. Кроме того, при низких значениях коэффициента тре­ния форменные элементы крови образуют агрегаты («монетные столби­ки») и, напротив, при высоких значениях коэффициента трения — де­формируются в потоке. Интересно отметить также еще одну особенность распределения клеточных элементов в потоке. Указанный выше градиент скорости в ламинарном потоке крови (формирующий параболический про­филь) создает градиент давления: в центральных слоях потока оно ниже, чем в периферических, что обусловливает тенденцию к перемещению клеток к центру.

Агрегация эритроцитов — способность эритроцитов создавать в цель­ной крови «монетные столбики» и их трехмерные конгломераты. Агрегация эритроцитов зависит от условий кровотока, состояния и состава крови и плазмы и непосредственно от самих эритроцитов.

Движущаяся кровь содержит как одиночные эритроциты, так и агрегаты. Среди агрегатов имеются отдельные цепочки эритроцитов («монетные стол­бики») и цепочки в виде выростов. С ускорением скорости потока крови раз­мер агрегатов уменьшается.

Для агрегации эритроцитов необходим фибриноген или другой высокомолекулярный белок или полисахарид, адсорбция которых на мем­бране этих клеток приводит к образованию мостиков между эритроцитами. В «монетных столбиках» эритроциты располагаются параллельно друг другу на постоянном межклеточном расстоянии (25 нм для фибриногена). Умень­шению этого расстояния препятствует сила электростатического отталкива­ния, возникающая при взаимодействии одноименных зарядов мембраны эритроцитов. Увеличению расстояния препятствуют мостики - молекулы фибриногена. Прочность образовавшихся агрегатов прямо пропорциональна концентрации фибриногена или высокомолекулярного агреганта.

Агрегация эритроцитов обратима: агрегаты клеток способны деформироваться и разрушаться при достижении определенной величины сдвига. При выраженных нарушениях нередко развивается сладж - генерализован­ное нарушение микроциркуляции, вызванное патологической агрегацией эритроцитов, как правило, сочетающейся с повышением гидродинамиче­ской прочности эритроцитарных агрегатов.

Агрегация эритроцитов, в основном, зависит от следующих факторов:

1)ионного состава среды: при повышении общего осмотического давления
плазмы эритроциты сморщиваются и утрачивают способность к агрегации;

2)поверхностно-активных веществ, изменяющих поверхностный заряд, и
их влияние может быть различным; 3) концентрации фибриногена и иммуноглобулинов; 4) контакта с инородными поверхностями, как правило,
сопровождается нарушением нормальной агрегации эритроцитов.

Суммарный объем эритроцитов примерно в 50 раз превышает объем лейкоцитов и тромбоцитов, в связи с чем реологическое поведение крови в крупных сосудах определяет их концентрация и структурно-функциональные свой­ства. К ним относятся следующие: эритроциты должны значительно деформи­роваться, чтобы не быть разрушенными при высоких скоростях кровотока в аорте и магистральных артериях, а также при преодолении капиллярного рус­ла, так как диаметр эритроцитов больше, чем капилляра. Решающее значение при этом имеют физические свойства мембраны эритроцитов, то есть ее спо­собности к деформации.

Деформируемость эритроцитов - это способность эритроцитов деформироваться в сдвиговом потоке, при прохождения через капилляры и поры, способность к плотной упаковке.

Основными факторами, от которых зависит деформируемость эритроцитов, являются: 1) осмотическое давление окружающей среды (плазмы крови); 2) соотношение внутриклеточного кальция и магния, концен­трация АТФ; 3) продолжительность и интенсивность приложенных к эритроциту внешних воздействий (механических и химических), меняющих липидный состав мембраны или нарушающих структуру спектриновой сети; 4) состояние цитоскелета эритроцита, в состав которого входит спектрин; 5) вязкость внутриклеточного содержимого эритроцитов в зависимости
от концентрации и свойств гемоглобина.

 

 

<== предыдущая лекция | следующая лекция ==>
Кислотно-основное состояние | Структурно-функциональная характеристика эритроцитов

Дата добавления: 2014-01-20; Просмотров: 11623; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:
studopedia.su - Студопедия (2013 - 2022) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.021 сек.