КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Математика как специфический язык естествознания
И. Кант - в каждом знании столько истины, сколько есть математики. Противоположного мнения о роли математики для раскрытия качественных особенностей придерживался великий писатель, мыслитель и естествоиспытатель И.В. Гёте, который воспринимал неживую природу и все живое (включая человека) как единое целое и придавал большое значение интуиции и опыту. В XIX в. с резкой критикой экспериментального изучения явлений природы выступил А. Шопенгауэр. Он не только поддерживал подход Гёте, но и вообще отрицал какую-либо пользу от применения математического языка к изучению природы. Даже сами математические доказательства Шопенгауэр называл «мышеловки», считая, что они не дают истинного представления о реальных процессах. Многие выдающиеся ученые XX в., в особенности физики, говорили о значении математики как важнейшего средства для точного выражения научной мысли. Н. Бор указывал на огромную роль математики в развитии теоретического естествознания и говорил, что математика — это не только наука, но и язык науки. В настоящее время к применению количественного языка математики особенно критически настроены ученые, занимающиеся исследованием сложных биологических, психических и социальных процессов и привыкшие больше доверять опыту и интуиции, чем их математическому анализу. Естествознание все шире использует математический аппарат для объяснения природных явлений [21, 29]. Можно выделить несколько направлений математизации естествознания: · количественный анализ и количественная формулировка качественно установленных фактов, обобщений и законов конкретных наук; · построение математических моделей (об этом несколько позже) и даже создание таких направлений, как математическая физика, математическая биология; · построение и анализ конкретных научных теорий, в частности их языка. Таким образом, количественные и качественные методы исследования не исключают, а скорее дополняют друг друга. Преимущества количественного языка математики в сравнении с естественным языком состоят в следующем: · Краткость и точность. Вместо множества слов – цифры, формулы, уравнения. · Математический язык точно и кратко формулирует количественные закономерности, характеризующие исследуемые явления природы Математика в естествознании: · играет роль универсального языка, специально предназначенного для лаконичной точной записи различных утверждений. Конечно, все, что можно описать языком математики, поддается выражению на обычном языке, но тогда изъяснение может оказаться чересчур длинным и запутанным; · служит источником моделей, алгоритмических схем для отображения связей, отношений и процессов, составляющих предмет естествознания. С одной стороны, любая математическая схема или модель - это упрощающая идеализация исследуемого объекта или явления, а с другой - упрощение позволяет ясно и однозначно выявить суть объекта или явления. Приложение математики к разным отраслям естествознания . По мнению акад. А.Н. Колмогорова, область применения математического метода принципиально не ограничена [13].
Дата добавления: 2014-01-20; Просмотров: 1478; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |