Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 3. Классификация экстремальных задач

Классификация экстремальных задач

Экстремальные задачи это задачи, связанные с нахождением наилучших (оптимальных) управляющих воздействий на систему при заданных ограничениях на эти воздействия.

В общем виде математическая постановка экстремальной задачи состоит в определении наибольшего или наименьшего значения целевой функции при условиях , где и - заданные функции, а - некоторые действительные числа.

Задачи математического программирования делятся на задачи линейного и нелинейного программирования. При этом если все функции и линейные, то соответствующая задача является задачей линейного программирования. Если же хотя бы одна из указанных функций нелинейная, то соответствующая задача является задачей нелинейного программирования.

Наиболее изученным разделом математического программирования является линейное программирование. Для решения задач линейного программирования разработан целый ряд эффективных методов, алгоритмов и программ.

Среди задач нелинейного программирования наиболее глубоко изучены задачи выпуклого программирования. Это задачи, в результате решения которых определяется минимум или максимум выпуклой (вогнутой) функции, заданной на выпуклом замкнутом множестве.

В свою очередь, среди задач выпуклого программирования более подробно исследованы задачи квадратичного программирования. В результате решения таких задач требуется в общем случае найти максимум (или минимум) квадратичной функции при условии, что ее переменные удовлетворяют некоторой системе линейных неравенств или линейных уравнений либо некоторой системе, содержащей как линейные неравенства, так и линейные уравнения.

Отдельными классами задач математического программирования являются задачи целочисленного, параметрического и дробно - линейного программирования.

В задачах целочисленного программирования неизвестные могут принимать только целочисленные значения.

В задачах параметрического программирования целевая функция или функции, определяющие область возможных изменений переменных, либо то и другое зависят от некоторых параметров.

В задачах дробно – линейного программирования целевая функция представляет собой отношение двух линейных функций, а функции, определяющие область возможных изменений переменных, также являются линейными.

Выделяют отдельные классы задач стохастического и динамического программирования.

Если в целевой функции или в функциях, определяющих область возможных изменений переменных, содержатся случайные величины, то такая задача относится к задаче стохастического программирования.

Задача, процесс нахождения решения которой является многоэтапным, относится к задаче динамического программирования.

ИТАК, подведем итоги.

Под общей задачей математического программирования будем понимать задачу максимизации скалярной функции

при условиях

и

В зависимости от структуры f и gi задачи математического программирования подразделяются на задачи линейного программирования (f и gi линейные), параметрического (хотя бы одна из функций f или qi зависит от некоторого параметра), стохастического (хотя бы одна из функций f или gi содержит в качестве коэффициентов случайные числа).

Область Д - некоторая область n -мерного эвклидова пространства Rn. Если эта область составляет некоторое подмножество натуральных чисел, то задачи математического программирования рассматриваются как дискретные задачи. Наиболее изученными среди таких задач являются задачи линейного программирования.

В ряде задач линейного и нелинейного прогр-я эк процесс зависит от времени – от нескольких периодов (этапов). При решении таких задач (они называются динамическими) необходимо учитывать поэтапное развитие процесса.Это, например, задача распределения ресурсов между предприятиями по годам планируемого периода. Метод решения задач такого рода составляет сущность динамического программирования.

<== предыдущая лекция | следующая лекция ==>
Подсистемы экономической системы | Этапы решения экстремальных ЗМП
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 3487; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.