КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Интегралы с бесконечными пределами интегрирования
Несобственные интегралы При введении понятия определённого интеграла мы предполагали, что подынтегральная функция является ограниченной, а пределы интегрирования – конечными. Такой интеграл называется собственным (слово «собственный» обычно опускается). Если хотя бы одно из этих двух условий не выполнено, то интеграл называется несобственным. Пусть функция f(x) непрерывна при <, т.е. при Тогда по определению полагают Если этот предел существует, то говорят, что интеграл сходится, а если предел не существует, то интеграл называют расходящимся. Геометрически для неотрицательной при функции f(x) несобственный интеграл по аналогии с собственным интегралом представляет собой площадь фигуры, ограниченной сверху графиком функции y=f(x), слева отрезком прямой x=a и снизу осью Ox.
Пример 13 Исследовать на сходимость интегралы: а) т.е. данный несобственный интеграл сходится. б) т.е. данный интеграл расходится. в) Установим, при каких значениях интеграл сходится. Случай был рассмотрен в примере б). Если то . Значит, данный интеграл сходится при >1 и расходится при Аналогично определяются следующие несобственные интегралы
Дата добавления: 2014-01-11; Просмотров: 548; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |