КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Правило трех сигм. Характерное свойство нормального распределения состоит в том, что в интервале [M[Х] ± 1s] находится около 68 % из всех его результатов измерений
Характерное свойство нормального распределения состоит в том, что в интервале [M[Х] ± 1s] находится около 68 % из всех его результатов измерений. В интервале [M[Х] ± 2s] - 95 %. В интервале [M[Х] ± 3s] - 99,73 % (рис. 1.12). Следовательно, почти все результаты измерений лежат в интервале 6s (по три s в каждую сторону от M[Х]). За пределами этого интервала могут находится 0,27 % данных от их общего числа (приблизительно три из тысячи результатов измерений). Рис. 1.12. Иллюстрация правила трех сигм
Отсюда следует, что если какое-либо значение величины выходит за пределы ±3s, то с большой вероятностью его можно считать ошибочным. На основании этого сформулировано правило трех сигм: если при многократных измерениях (n > 25…30) одной и той же величины постоянного размера сомнительный результат Хсомн отдельного измерения (максимальный или минимальный) отличается от среднего значения более чем на 3s, то с вероятностью 99,7 % он ошибочен, т.е. если > 3s, (1.12) то Хсомн является промахом; его отбрасывают и не учитывают при дальнейшей обработке результатов измерений. Закон нормального распределения работает при числе результатов измерений n = ¥. В реальности получают конечное число измерений, которые подчиняются закону распределения Стьюдента. При n>25 распределение Стьюдента стремится к нормальному.
Дата добавления: 2014-01-11; Просмотров: 769; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |