Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Промышленные роботы

ПР — автоматическая машина, стационарная или подвижная, состоящая из исполнительного устройства в виде манипулятора, имеющего несколько степеней подвижности, и устройства программного управления для выполнения в производственном процессе двигательных и управляющих функций.

 

Появление и развитие промышленных роботов, безусловно, явились одним из крупнейших достижений науки и техники последних лет. Они позволили расширить фронт работ по автоматизации технологических и вспомогательных процессов, открыли широкие перспективы создания автоматических систем машин для гибкого, переналаживаемого производства.

 

Промышленные роботы избежали периода недоверия и недооценки, трудностей становления. Наоборот, ни одному техническому средству не доставалось даже авансом столько восторженных похвал, ни одному не уделялось столько внимания. Однако, на протяжении длительного времени промышленные роботы рассматривались с позиций не действенного средства повышения эффективности производства, а лишь как некий эквивалентный заменитель человека на производстве, призванный высвободить его от монотонных и тяжелых, непривлекательных ручных работ.

 

Когда промышленные роботы стали выходить на широкую дорогу производственного применения, именно концепция «робот заменяет человека» в отрыве от конечных задач и остального арсенала технических средств производства явилась источником множества трудностей и неудач.

 

Прежде всего, она глубоко ошибочна в сущности. Робот не может заменить человека. Человека может заменить лишь другой человек, желательно более сильный, квалифицированный, добросовестный.

 

В разнообразии функций и возможностей, подвластных человеку, в том числе в сфере производства, роботы в состоянии взять на себя лишь считанное число функций, которые во многих случаях не превышают возможности таких традиционных средств механизации и автоматизации, как ленточные транспортеры, вибрационные загрузочные устройства, обычные манипуляторы с цикловым управлением, которые известны уже десятки лет. Более того, все те отличительные свойства по сравнению с человеком, которые мы восторженно приписываем промышленным роботам, на самом деле Обычные свойства любых технических средств производства. Ленточный транспортер тоже заменяет человека, высвобождая его от тяжелого ручного труда.

 

Сложившееся идеализированное представление о роботах, которые якобы способны полностью заменить людей на производстве и позволяют в кратчайшие сроки осуществить «технологическую революцию», перестроить основы промышленного производства не отражает реального положения дел. В действительности же осуществляемое быстрыми темпами массовое внедрение роботизированных систем во многом дестабилизировало промышленное производство и породило немало серьезных проблем. Это произошло потому, что реальные возможности роботов были преувеличены и некоторые образцовые примеры преподносились как типичные. Такое упрощенное и неточное представление о роботах небезвредно хотя бы потому, что маскирует проблемы, с которыми приходится сталкиваться на практике.

 

Превратное понимание роботизации, нацеливание ее не на решение коренных проблем повышения эффективности производства (качество, производительность, себестоимость), а лишь на имитацию некоторых ручных действий человека в надежде, что все остальное приложится, тоже не столь безобидны, как это может показаться.

 

Во-первых, отсюда лишь один шаг до роботизации ради самой роботизации. И как следствие—разочарование и дискредитация, потому что производство с его суровыми законами неизбежно отторгает дорогие, тихоходные и малонадежные конструкции. Во-вторых, и сами разработчики, действуя по принципу «лишь бы робот, лишь бы манипулировал», начинают искать самые легкие, а не самые эффективные пути.

 

Ведь с точки зрения возможностей повышения эффективности производства различные типы роботов далеко не равнозначны. Так, их применение на операциях сварки, окраски, нанесения гальванопокрытий, очистки позволяет существенно повышать качество продукции, прежде всего за счет стабилизации технологических режимов. Производительность оборудования повышается здесь за счет «многорукости», быстродействия, увеличенной грузоподъемности, человек полностью выводится из рабочей зоны и избавляется от труда в неблагоприятной среде.

 

В то же время при загрузке металлорежущих станков промышленные роботы на качество изделий не влияют. По производительности оборудования, как правило, получается проигрыш, так как ручная загрузка деталей массой до 3—5 кг выполняется человеком в несколько раз быстрее. Следовательно, выигрыш можно получить лишь по фонду заработной платы, да и то незначительный, так как один рабочий обслуживает 2—3 станка с ЧПУ и без роботов. Почему же тогда подавляющее большинство разработок адресуется не сварке, окраске, гальванопроизводству, а загрузке металлорежущих станков или прессов, т.е. наименее перспективным направлениям? Ответ один — если подходить к роботизации как к задаче имитации действий человека, то так проще, легче, удобнее. На сегодняшний день потенциально эффективными являются прежде всего роботы для точечной и шовной сварки, в том числе в автомобильной промышленности.

 

На сегодняшний день роботизированные комплексы приспособлены к выпуску весьма ограниченного числа видов продукции. Если, например, квалифицированному рабочему для перехода от одной производственной операции к другой практически требуется всего несколько секунд, то перепрограммирование роботов представляет собой достаточно сложный процесс. Реальные сдвиги в этой области произойдут лишь с внедрением в производство новых поколений промышленных роботов, обладающих значительно большим объемом «памяти», и с разработкой более совершенных языков программирования. Достаточно малейшей неисправности одного из роботов, и работа на всей линии автоматически прекращается. Оборудование, таким образом, простаивает.

 

Не случайно поэтому на многих промышленных предприятиях в конце каждой конвейерной линии дополнительно устанавливают оборудование, позволяющее выполнять вручную те операции, которые не смог осуществить тот или иной вышедший из строя робот. Подобные действия, в результате которых доля ручного труда на роботизированных участках в короткий срок возрастает до 30—40 °/о, нередко становятся поводом для серьезных проблем.

 

К настоящему времени миф о непогрешимости и всемогуществе промышленных роботов, согласно которому автоматизация производства сводится к его роботизации, замене рабочих на производстве промышленными роботами, ничего, кроме вреда, не приносит. Концепция эта подразумевает, что технологические процессы, конструкции и компоновки машин остаются в основном на прежнем уровне, но высвобождаются от необходимого присутствия человека. Это неверно. Содержание любого процесса производства составляли и будут составлять технологические процессы получения материалов, их обработки, контроля и сборки изделий, материализованные в конструкциях и компоновках машин, аппаратов и их систем. Именно в них закладываются все потенциальные возможности качества и количества выпускаемой продукции, экономической эффективности производства. Никакая автоматика и робототехника не может дать более того, что заложено в технологии.

 

Между тем все технологические процессы неавтоматизированного производства обладают невысоким потенциалом из-за низкой интенсивности, отсутствия концентрации операций, их совмещения во времени. Одностороннее замещение функций человека в системах, которые десятилетиями складывались применительно к ограниченным возможностям, бесперспективно.

 

Немалое количество автоматизированного роботизированного оборудования, спроектированного высококвалифицированными разработчиками, оказалось неудачным лишь потому, что все усилия разработчиков были направлены на «искоренение» ручных операций, а вопросы качества продукции, быстродействия машин и их надежности в работе упускались из виду. В результате появляется новая техника, работающая, по «безлюдной технологии», но громоздкая и дорогая, малопроизводительная и ненадежная, а в итоге экономически неэффективная.

 

Автоматизация производства есть комплексная конструкторско-технологическая задача создания новой техники, принципиально отличной от технического арсенала средств неавтоматизированного производства.

 

Генеральное направление комплексной автоматизации производственных процессов — не в замене человека при обслуживании известных машин и аппаратов, а в создании высокоинтенсивных технологических процессов и высокопроизводительных средств производства, которые были бы вообще невозможны при непосредственном участии человека. В стратегическом плане это означает поворот к первоочередному техническому перевооружению именно тех звеньев производства, где можно добиться результатов благодаря применению прогрессивной технологии, новых методов и процессов,—-концентрации операций, многопозиционной и многоинструментной обработки или сборки. Средства роботизации должны не просто имитировать или замещать действия человека, а выполнять производственные функции быстрее и лучше, лишь тогда они будут по-настоящему эффективными. Они, включая самые перспективные и прогрессивные, должны применяться не там, где их можно приспособить, а там, где без них нельзя обойтись.

 

Подавляющее большинство универсальных металлорежущих станков, прессов, сварочных установок однопозиционные и одноинструментные. В них одновременно обрабатывается лишь одно изделие одним инструментом. Это объясняется ограниченными возможностями человека, который не может одновременно управлять несколькими процессами или объектами. Применение современной электроники позволяет создавать оборудование с высокой степенью концентрации технологического процесса, со многими одновременно действующими механизмами и инструментами. Поэтому техническая политика, особенно при создании роботизированных производственных систем для серийного производства, должна быть направлена в первую очередь на проектирование, внедрение многоинструментных и многопозиционных машин с дифференциацией и концентрацией операций, которые в десятки раз производительнее обычного однопозиционного оборудования и где ручные, нероботизированные операции невозможны.

По характеру выполняемых операций ПР подразделяют на три группы: 1. Производственные роботы, служащие для автоматизации основных операций технологического процесса (сборка, сварка, окраска и т. д.). 2. Подъемно-транспортные роботы, служащие для автоматизации вспомогательных операций (установка — снятие заготовок и инструмента, удаление стружки и т. д.). 3. Универсальные роботы, выполняющие как основные, так и вспомогательные операции.

 

Основным элементом любого ПР является механическая система, предназначенная для выполнения двигательных функций и реализации его технологического назначения. Механическая система конструктивно состоит из следующих основных узлов: несущих конструкций; приводов; исполнительных механизмов и захватных устройств. Захват и удерживание объекта манипулирования выполняется захватным устройством, которое устанавливается на исполнительном механизме, часто называемом «рукой» ПР.

 

Система программного управления служит для программирования движений ПР, как правило, технологического оборудования, сохранения УП, ее воспроизведения и обработки.

 

Информационная система выполняет сбор, первичную обработку и передачу в систему программного управления данных о функционировании узлов и механизмов ПР и о состоянии внешней среды (объекта манипулирования, технологического оборудования). Информационные системы ПР по функциональному назначению подразделяют на три подсистемы: 1. Восприятия и переработки информации о внешней среде, в которой работает ПР. 2. Внутренней информации о состоянии самого ПР. 3. Обеспечения техники безопасности.

 

Модель ПР для использования в конкретных производственных условиях выбирают по технологическим показателям, к которым относятся:

1. Номинальная грузоподъемность ПР. 2. Усилие зажима (захвата, удержания) объекта манипулирования захватным устройством. 3. Число степеней подвижности ПР — сумма возможных координатных движений объекта манипулирования относительно основания ПР. 4. Рабочая зона ПР — пространство, в котором может находиться исполнительное устройство при функционировании ПР. Рабочая зона характеризуется формой и геометрическими размерами. 5. Погрешность позиционирования ПР (отклонения положения рабочего органа ПР от заданного УП). 6. Мобильность — способность ПР совершать движения.

 

По мобильности ПР подразделяют на две группы: стационарные (обеспечивающие, ориентирующие и транспортирующие движения); передвижные (обеспечивающие дополнительно к указанным еще и координатные движения).

 

Исполнительные механизмы ПР. Исполнительный механизм (манипулятор) ПР представляет собой совокупность подвижно соединенных звеньев, служащих для воздействия на объект манипулирования или обрабатываемую среду. Соединение звеньев манипулятора в кинематическую цепь выполняется посредством кинематических пар. В большинстве конструкций манипуляторов ПР применяются кинематические пары класса V вращательные или поступательные. Они обеспечивают одну степень свободы в относительном движении каждого из подвижно соединяемых звеньев.

 

Важной характеристикой манипулятора является число степеней подвижности, определяемое числом степеней свободы кинематической цепи относительно неподвижного звена. В открытых кинематических цепях, к которым относятся манипуляторы ПР, число п подвижных звеньев всегда равно числу кинематических пар р. Для кинематической

цепи, состоящей только из кинематических пар класса V, число степеней подвижности W= 6п — 5р.

 

Звенья манипуляторов ПР в большинстве случаев образуют поступательные и вращательные пары класса V. В случаях, когда в кинематическую цепь входят только вращательные пары, манипулятор ПР имеет антропоморфную схему, подобную руке человека.

 

Для обеспечения перемещения захватного устройства ПР в любую точку рабочего пространства манипулятор должен иметь три степени подвижности. Еще три такиее степени нужны для обеспечения захватному устройству любой ориентации в этой точке. В зависимости от конкретных условий производства манипуляторы ПР имеют от двух до семи степеней подвижности.

 

В зависимости от конструктивной схемы захватное устройство манипулятора ПР может располагаться в рабочей зоне, имеющей ту или иную форму, а его движения осуществляться в различных системах

координат, которые бывают двух видов: прямоугольные и криволинейные. В прямоугольной системе координат (плоская и пространственная) объект манипулирования помещается в определенную точку рабочей зоны за счет прямолинейных перемещений звеньев манипулятора ПР по двум (или трем) взаимно перпендикулярным осям. В криволинейной системе координат наиболее распространены полярные плоские, цилиндрические и сферические координаты. К разновидностям криволинейной системы относятся ангулярная, плоская и пространственная (цилиндрическая и сферическая), которые характерны для многозвенных манипуляторов ПР.

 

Приводы ПР. Для перемещения рабочих органов ПР используют пневматические, гидравлические, электрические и комбинированные приводы. Наиболее распространены пневматические приводы (45 % общего мирового парка ПР).

 

Приводы ПР классифицируют по ряду признаков. По числу двигателей различают групповой, однодвигательный и многодвигательный привод. Групповой привод обеспечивает одновременное перемещение нескольких звеньев ПР либо может обеспечивать согласованное перемещение звеньев нескольких ПР. Для передачи заданной мощности на несколько звеньев и ее распределения между ними используют трансмиссии, поэтому такой привод также называют трансмиссионным. Индивидуальный или однодвигательный привод обеспечивает движение только одного звена исполнительного механизма ПР. Это значительно упрощает конструкцию механических передач, а в ряде случаев позволяет отказаться от них. У многодвигательного привода двигатели совместно работают на общий вал, что дает возможность распределить потребляемую мощность между отдельными двигателями и улучшить условия работы механической передачи.

 

По способу управления приводы делят на нерегулируемые, обеспечивающие движение звеньев с одной рабочей скоростью; регулируемые, обеспечивающие регулирование скорости движения звеньев под воздействием устройств управления; следящие, обеспечивающие отработку перемещений с определенной точностью согласно произвольно меняющемуся задающему сигналу; адаптивные — автоматически избирающие параметры управления при изменении условий работы с целью выработки оптимального режима.

 

 

Типовые конструкции ПР. Конструкция механической системы ПР зависит от служебного назначения, привода, системы управления и

ряда других факторов.

 

Напольные ПР с качающейся вьщвижной рукой работают в сферической и цилиндрической системах координат (рис. а).

Напольные ПР с горизонтальной вьдвижной рукой и консольным механизмом подъема наиболее распространены. ПР с пневматическим приводом и выдвижной рукой (рис. б) работает в цилиндрической системе координат. Рука ПР представляет собой пневмоцилиндр с выдвижным штоком, на конце которого установлено захватное устройство 3. На основании 7 расположены механизм поворота вокруг вертикальной оси и механизм вертикального подъема руки.

 

Поворот вокруг вертикальной оси выполняется двумя пневмоци-линдрами, соединенными цепной передачей с блоком звездочек, смонтированным на поворотной колонне. Такие ПР выпускают в одно-,

двух-, трехруком исполнении.

 

Напольные ПР с горизонтальной выдвижной рукой 7, установленной на подъемной каретке 2 (рис. в), работают в цилиндрической системе координат и могут обслуживать один или два станка. В ПР такого рода используют все виды приводов рабочих органов и их комбинации, а также все известные виды систем управления. Грузоподъемность различных конструкций ПР от 1 до 1000 кг, число степеней подвижности от трех до семи. Напольные работы с многозвенной рукой работают, как правило, в ангулярной системе координат, оснащаются гидравлическими или электрическими приводами и управляются посредством позиционной или контурной системы (рис. г).

 

Портальные ПР. Преимуществами этих ПР является экономия производственной площади и удобство обслуживания. Использование опорных систем большой длины позволяет компоновать участки с групповым обслуживанием станков одним ПР при линейном расположении оборудования.

 

ПР строят на основе агрегатно-модульного принципа. Новые модели ПР создаются на базе унифицированных агрегатных узлов и блоков. Это обеспечивает широкий диапазон конструкции ПР с техническими параметрами, которые наиболее полно соответствуют конкретным требованиям производства. На рисуеке даны варианты принципиальных схем компоновок ПР, построенных на основе использования девяти различных модулей.

 

 

Захватные устройства ПР. Эти устройства предназначены для захватывания и удержания в определенном положении объектов манипулирования (заготовок или инструментов). ПР комплектуют набором типовых захватных устройств, которые можно менять в зависимости от конкретного рабочего задания.

 

Захватные устройства ПР классифицируют по принципу действия

и по способу управления, характеру базирования объекта манипулирования, степени специализации.

 

По принципу действия захватные устройства подразделяют на механические, магнитные, электромагнитные, вакуумные с эластичными камерами. По способу управления различают неуправляемые командные, жесткопрограммируемые и адаптивные захватные устройства.

 

Неуправляемые захватные устройства — устройства с постоянными магнитами или с вакуумными присосками без принудительного разряжения в виде разрезных упругих валиков, подпружиненных клещей и т. д. Эти устройства используют в массовом производстве при манипулировании с объектами небольшой массы и габаритных размеров.

 

Командные захватные устройства управляются только командами

на захватывание или опускание объекта. В жесткопрограммируемых захватных устройствах, управляемых системой управления ПР, усилие зажима и величина перемещения губок могут регулироваться в зависимости от заданной программы.

 

Системы управления ПР. В зависимости от служебного назначения ПР структуры систем автоматического программного управления отличаются как по составу, так и по организации взаимодействия между составляющими элементами. Каждую из типовых систем управления ПР можно рассматривать как частный случай системы, структурная схема которой дана на рисунке.

 

Информацию о требуемой траектории перемещения захватного устройства ПР записывают с помощью задающего устройства ЗДУ. Эту

операцию называют программированием систем управления ПР. Управляющее устройство УУ реализует алгоритмы управления, которые обеспечивают выполнение программных движений, синхронизируют работу всех подсистем ПР совместно с внешним оборудованием ВО, ведут контроль состояния системы и выдают информацию в блок индикации БИ.

 

Сигналы, выработанные УУ, преобразуются в устройствах сопряжения УС и поступают в подсистему приводов манипулятора ПМ, которые согласно программе перемещают звенья манипулятора М. Истинное положение этих звеньев определяется посредством ДОС. Информация от ДОС, преобразованная в УУ, используется для управления. При некоторых способах программирования эта информация передается в запоминающее устройство ЗУ. Система может работать в одном из двух режимов: программирование и автоматическое воспроизведение программных движений.

 

<== предыдущая лекция | следующая лекция ==>
Хирургическая операция | Научные и философские модели происхождения человека
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1598; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.068 сек.