Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 3. Нелинейная регрессия

Линейная регрессия и методы ее исследования и оценки не имели бы столь большого значения, если бы помимо этого весьма важного, но все же простейшего случая, мы не получали с их помощью инструмента анализа более сложных нелинейных зависимостей. Нелинейные регрессии могут быть разделены на два существенно различных класса. Первым и более простым является класс нелинейных зависимостей, в которых имеется нелинейность относительно объясняющих переменных, но которые остаются линейными по входящим в них и подлежащим оценке параметрам. Сюда входят полиномы различных степеней и равносторонняя гипербола.

Такая нелинейная регрессия по включенным в объяснение переменным простым преобразованием (заменой) переменных легко сводится к обычной линейной регрессии для новых переменных. Поэтому оценка параметров в этом случае выполняется просто по МНК, поскольку зависимости линейны по параметрам. Так важную роль в экономике играет нелинейная зависимость, описываемая равносторонней гиперболой:

y = a + (3.1)

Ее параметры хорошо оцениваются по МНК и сама такая зависимость характеризует связь удельных расходов сырья, топлива, материалов с объемом выпускаемой продукции, временем обращения товаров и всех этих факторов с величиной товарооборота. Например, кривая Филипса характеризует нелинейное соотношение между нормой безработицы и процентом прироста заработной платы.

Совершенно по другому обстоит дело с регрессией,нелинейной по оцениваемым параметрам, например, представляемой степенной функцией, в которой сама степень (ее показатель) является параметром, или зависит от параметра. Также это может быть показательная функция, где основанием степени является параметр и экспоненциальная функция, в которой опять же показатель содержит параметр или комбинацию параметров. Этот класс в свою очередь делится на два подкласса: к одному относятся внешне нелинейные, но по существу внутренне линейные. В этом случае можно привести модель к линейному виду с помощью преобразований. Однако, если модель внутренне нелинейна, то она не может быть сведена к линейной функции.

Таким образом, только модели внутренне нелинейные в регрессионном анализе считаются действительно нелинейными. Все прочие, сводящиеся к линейным посредством преобразований, таковыми не считаются и именно они и рассматриваются чаще всего в эконометрических исследованиях. В то же время это не означает невозможности исследования в эконометрике существенно нелинейных зависимостей. Если модель внутренне нелинейна по параметрам, то для оценки параметров используются итеративные процедуры, успешность которых зависит от вида уравнения особенностей применяемого итеративного метода.

Вернемся к зависимостям, приводимым к линейным. Если они нелинейны и по параметрам и по переменным, например, вида у=а умноженному на степень х, показатель которой и есть параметр – b (бета):

y = a (3.2)

Очевидно, такое соотношение легко преобразуется в линейное уравнение простым логарифмированием: .

После введения новых переменных, обозначающих логарифмы, получается линейное уравнение. Тогда процедура оценивания регрессии состоит в вычислении новых переменных для каждого наблюдения путем взятия логарифмов от исходных значений. Затем оценивается регрессионная зависимость новых переменных. Для перехода к исходным переменным следует взять антилогарифм, т. е фактически вернуться к самим степеням вместо их показателей (ведь логарифм это и есть показатель степени). Аналогично может рассматриваться случай показательных или экспоненциальных функций.

Для существенно нелинейной регрессии невозможно применение обычной процедуры оценивания регрессии, поскольку соответствующая зависимость не может быть преобразована в линейную. Общая схема действий при этом такова:

1. Принимаются некоторые правдоподобные исходные значения параметров;

2. Вычисляются предсказанные значения у по фактическим значениям х с использованием этих значений параметров;

3. Вычисляются остатки для всех наблюдений в выборке и затем сумма квадратов остатков;

4. Вносятся небольшие изменения в одну или более оценку параметров;

5. Вычисляются новые предсказанные значения у, остатки и сумма квадратов остатков;

6. Если сумма квадратов остатков меньше, чем прежде, то новые оценки параметров лучше прежних и их следует использовать в качестве новой отправной точки.

7. Шаги 4, 5 и 6 повторяются вновь до тех пор, пока не окажется невозможным внести такие изменения в оценки параметров, которые привели бы к изменению суммы остатков квадратов.

8. Делается вывод о том, что величина суммы квадратов остатков минимизирована, и конечные оценки параметров являются оценками по методу наименьших квадратов.

Среди нелинейных функций, которые могут быть приведены к линейному виду, в эконометрике широко используется степенная функция. Параметр b в ней имеет четкое истолкование, являясь коэффициентом эластичности. В моделях, нелинейных по оцениваемым параметрам, но приводимых к линейному виду, МНК применяется к преобразованным уравнениям. Практическое применение логарифмирования и соответственно экспоненты возможно тогда, когда результативный признак не имеет отрицательных значений. При исследовании взаимосвязей среди функций, использующих логарифм результативного признака, в эконометрике преобладают степенные зависимости (кривые спроса и предложения, производственные функции, кривые освоения для характеристики связи между трудоемкостью продукции, масштабами производства, зависимость ВНД от уровня занятости, кривые Энгеля).

Иногда используется так называемая обратная модель, являющаяся внутренне нелинейной, но в ней в отличие от равносторонней гиперболы преобразованию подвергается не объясняющая переменная, а результативный признак у. Поэтому обратная модель оказывается внутренне нелинейной и требование МНК выполняется не для фактических значений результативного признака у, а для их обратных значений. Особого внимания заслуживает исследование корреляции для нелинейной регрессии. В общем случае парабола второй степени, также, как и полиномы более высокого порядка, при линеаризации принимает вид уравнения множественной регрессии. Если же нелинейное относительно объясняемой переменной уравнение регрессии при линеаризации принимает форму линейного уравнения парной регрессии, то для оценки тесноты связи может быть использован линейный коэффициент корреляции.

Если преобразования уравнения регрессии в линейную форму связаны с зависимой переменной (результативным признаком), то линейный коэффициент корреляции по преобразованным значениям признаков дает лишь приближенную оценку связи и численно не совпадает с индексом корреляции. Следует иметь в виду, что при расчете индекса корреляции используются суммы квадратов отклонений результативного признака у, а не их логарифмов. Оценка значимости индекса корреляции выполняется также как и оценка надежности (значимости) коэффициента корреляции. Сам индекс корреляции как и индекс детерминации используется для проверки значимости в целом уравнения нелинейной регрессии по F-критерию Фишера.

Отметим, что возможность построения нелинейных моделей, как посредством приведения их к линейному виду, так и путем использования нелинейной регрессии с одной стороны повышает универсальность регрессионного анализа. А с другой – существенно усложняет задачи исследователя. Если ограничиваться парным регрессионным анализом, то можно построить график наблюдений у и х как диаграмму разброса. Часто несколько различных нелинейных функций приблизительно соответствуют наблюдениям, если они лежат на некоторой кривой. Но в случае множественного регрессионного анализа такой график построить невозможно.

При рассмотрении альтернативных моделей с одним и тем же определением зависимой переменной процедура выбора сравнительно проста. Можно оценивать регрессию на основе всех вероятных функций, которые можно вообразить и выбирать функцию, в наибольшей степени объясняющую изменения зависимой переменной. Понятно, что когда линейная функция объясняет примерно 64% дисперсии у, а гиперболическая - 99,9%, очевидно следует выбирать последнюю модель. Но когда разные модели используют разные функциональные формы, проблема выбора модели существенно осложняется.

Более общим образом при рассмотрении альтернативных моделей с одним и тем же определением зависимой переменной выбор прост. Разумнее всего оценивать регрессию на основе всех вероятных функций, останавливаясь на функции, в наибольшей степени объясняющей изменения зависимой переменной. Если коэффициент детерминации измеряет в одном случае объясненную регрессией долю дисперсии, а в другом – объясненную регрессией долю дисперсии логарифма этой зависимой переменной, то выбор делается без затруднений. Другое дело, когда эти значения для двух моделей весьма близки и проблема выбора существенно осложняется.

Тогда следует применять стандартную процедуру в виде теста Бокса-Кокса. Если нужно всего лишь сравнить модели с использованием результативного фактора и его логарифма в виде варианта зависимой переменой, то применяют вариант теста Зарембки. В нем предлагается преобразование масштаба наблюдений у, при котором обеспечивается возможность непосредственного сравнения среднеквадратичной ошибки (СКО) в линейной и логарифмическоймоделях. Соответствующая процедура включает следующие шаги:

1. Вычисляется среднее геометрическое значений у в выборке, совпадающее с экспонентой среднего арифметического значений логарифма от у.

2. Пересчитываются наблюдения у, таким образом что они делятся на полученное на первом шаге значение.

3. Оценивается регрессия для линейной модели с использованием пересчитанных значений у вместо исходных значений у и для логарифмической модели с использованием логарифма от пересчитанных значений у. Теперь значения СКО для двух регрессий сравнимы и поэтому модель с меньшей суммой квадратов отклонений обеспечивает лучшее соответствие с истинной зависимостью наблюденных значений.

4. Для проверки того, что одна из моделей не обеспечивает значимо лучшее соответствие можно использовать произведение половины числа наблюдений на логарифм отношения значений СКО в пересчитанных регрессиях с последующим взятием абсолютного значения этой величины. Такая статистика имеет распределение хи-квадрат с одной степенью свободы (обобщение нормального распределения).

<== предыдущая лекция | следующая лекция ==>
Лекция 2. Обоснование критериев проверки | Лекция 4 множественная регрессия
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 2315; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.