Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Принципиальные схемы флюороскопических досмотровых установок

Одним из самых важных параметров рентгеноаппаратов является их чувствительность, определяемая в мировой практике как размеры уверенного обнаружения на экране устройства визуализации специального тест-объекта в виде эталонной медной проволочки определённого диаметра. Чувствительность флюороскопов определяется в основном двумя параметрами - интенсивностью излучения и эффективностью его регистрации рентгеновским экраном - и зависит от толщины и плотности контролируемого объекта. Чтобы обеспечить высокую яркость свечения экрана требуется достаточно высокая энергия рентгеновского источника, что не только оказывает существенное влияние на объект контроля, но и требует применения высокоэффективных средств защиты оператора и окружения от прямого и рассеянного рентгеновского излучения, а это в свою очередь влечёт за собой существенное увеличение весогабаритных параметров флюороскопов, практически выполнить которые применительно к таможенному контролю багажа и ручной клади не представляется возможным. Поэтому реально, флюороскопия вынуждена проводиться при сравнительно низких яркостях свечения существующих ныне экранов, к сожалению требующих длительной адаптации зрения и применения светозащитных тубусов или даже специальных кабин. Отказаться от светозащитных приспособлений позволяют рентгеноаппараты с электронно-оптическими усилителями (преобразователями) света (ЭОП). ЭОПы позволяют значительно уменьшить уровень лучевой нагрузки на контролируемый объект и снизить вес устройств радиационной защиты рентгеноаппарата. Одним из недостатков флюороскопов и флюороскопов с ЭОП является сравнительно незначительные размеры наблюдательных экранов (не более 0,6 - 0,7м).

В рентгенотелевизионных флюороскопах рентгеновское изоб­ражение контролируемого объекта преобразуется в видимое входным рентгеновским экраном и проецируется с помощью светосильной оптики на высокочувствительный фотокатод передающей теле­визионной трубки. В ней изображение преобразуется в видеосигнал, который после обработки в блоке формирования телевизионного сигнала снова преобразуется в видимое изображение на телемониторе.

Применение телевизионных систем во флюороскопах позволяет создать сравнительно комфортные условия работы оператора, поскольку ему не приходится тратить время и испытывать неудобства, вызванные необходимостью адаптации зрения при использовании светозащитного тубуса или находиться в тёмной кабине в течение всего времени таможенного контроля.

Что касается применения во флюороскопах импульсных источников рентгеновского излучения в сочетании с блоками за­поминания изображения, то их преимущества очевидны. Во-первых, оператор и окружение не подвергаются сравнительно длительному облучению, т.к.для формирования теневого изображения на мониторе аппарата достаточно длительности серии импульсов рентгеновского генератора в доли секунды. Во-вторых, оператор имеет возможность наблюдать изображение предмета столько времени, сколько нужно для идентификации содержимого объектов контроля, а также, используя электронные способы обработки, варьировать контрастность и масштабирование изображения и его отдельных элементов. Кроме этого, при импульсном режиме работы практически не успевает разрушиться светочувствительный слой бытовых фотокиноплёнок, которые могут находиться в контролируемом объекте, и тем самым не ущемляются права их владельцев.

Поясним принцип работы телевизионного блока памяти. При воздействии короткого рентгеновского импульса ТВ-камера вос­принимает моментальное теневое изображение с флюоресцентного экрана и передаёт электрический сигнал в блок памяти, выполненный, например, на запоминающей электронно-лучевой трубке (ЗЭЛТ). Мишень ЗЭЛТ состоит из нескольких миллионов элементарных ёмкостей. Эти ёмкости заряжаются пропорционально числу электронов в записываемом луче, который синхронно с лучом в передающей трубке образует на мишени ЗЭЛТ растр. Затем блок памяти автоматически переключается в режим считывания. На этом этапе электронный луч, "развёртывая" мишень и взаимодействуя с электрическим полем заряженных элементарных ёмкостей мишени ЗЭЛТ, отдаёт часть электронов, пропорционально зарядам этих ёмкостей, на сигнальную пластину. Усиленный сигнал поступает на видео - контрольное устройство, и изображение, многократно считываемое с мишени ЗЭЛТ, представляется оператору для визуа­лизации. Именно применение ТВ-трубок с высокой чувствительностью позволяет снизить уровень экспозиционной дозы до величины безопасной для бытовых фотоплёнок, а также существенно снизить требования к радиационной защите и уменьшить вес установок.

Принцип работы рентгеноустановок, основанный на применении метода сканирующего рентгеновского луча можно продемонстрировать на схеме Рис.2.6. Неподвижный рентгеновский генератор (Re) с помощью специального коллимирующего устройства формирует узкий (около 1° по толщине) веерообразный пучок рентгеновских лучей, по вертикали имеющий угол около 60°. Рентгеновские лучи, прошедшие сквозь объект контроля с помощью специальной детекторной линейки, преобразуются в электрические сигналы, которые после соответствующей обработки в блоке обработки информации, записываются устройством цифровой видеопамяти, а затем поступают на видеоконтрольное устройство монитор, трансформирующее их в видимое изображение на телевизионном экране.

На схеме показаны три основные функциональные системы рентгеновских аппаратов сканирующего типа: система управления, рентгеновская система и система получения изображения.

Мозгом системы управления является микропроцессорный программированный блок управления. Он получает управляющие си­гналы от соответствующих управляющих кнопок пульта управления оператора, от световых датчиков зоны включения и выключения рентгеновского излучения, регистратора скорости движения конвейера, а также подаёт команды на конвейерную ленту, рентгеновский генератор, монитор и модуль детекторной линейки. Он обеспечивает включение рентгеновского генератора только при движущейся ленте транспортёра и только при наличии в контрольном туннеле объекта контроля.

Схема построения рентгенотелевизионного аппарата по методу сканирующего луча

Рисунок.2.6.

Рентгеновская система - содержит собственно рентгеновский генератор, коллиматорное устройство, блок управления режимом работы генератора и энергопитанием, а также световые индикаторы включённого рентгеновского излучения.

Система получения изображения - состоит из непосредственно контура «Г-образной» детекторной линейки, куда попадает прошедшее через контролируемый объект рентгеновское излучение, и где оно превращается в видимый свет, благодаря специальным устройствам - сцинцилляторам. Сцинцилляция - это свойство определённых веществ светиться под действием ионизирующих излучений, к которым, как известно, и относится рентгеновское излучение. Возникновение сцинцилляций связано с тем, что при взаимодействии электронов, образованных ионизирующим излучением, с веществом сцинциллятора его возбуждённые и ионизированные атомы возвращаются в нормальное состояние с испусканием микрочастиц видимого света. Световые вспышки воспринимаются фотодиодами, которые и преобразуются ими в электрические сигналы, усиливаются и поступают в процессор детекторной линейки. Детекторные сигналы путём опроса каждого детектора всей линейки детекторов считываются и последовательно измеряются, интегрируются с помощью специальных устройств - аналоговых мультиплексоров. При отсутствии рентгеновского излучения процессор детекторной линейки измеряет фоновые величины (шумы и помехи) всех каналов детекторной линейки, переводит их цифровую форму и фиксирует в блоке памяти. При включении рентгеновского излучения эти фоновые сигналы вычитаются из общего сигнала теневого изображения, создавая качественное, чёткое (без аппаратурных шумов) изображение контролируемого объекта на чёрно-белом мониторе. Система получения изображения позволяет оператору проводить анализ теневого изображения, используя возможности электронных схем обработки записанной в памяти "картинки", обеспечивающих изменение её контрастности, выделяя более плотные предметы или создавая негативное изображение объекта.

Особо следует обратить внимание на выполнение в рентгенотелевизионных аппаратах сканирующего типа - радиационной защиты. Она делается особо тщательно и предусматривает защиту собственно рентгеновского генератора специальным свинцовым кожухом; конструкция контрольного туннеля также выполняется из металлических листов толщиной 1,5 - 2,5мм; детекторная линейка снабжается специальным свинцовым экраном; загрузочно-разгрузочные арки туннеля закрываются резиновыми свинцовосодержащими полосками (лентами), также экранирующими рассеянное рентгеновское излучение. Это, кроме обеспечения безопасности продуктов, фотоматериалов и лекарственных препаратов, позволяет добиться минимально возможных, полностью безопасных для человека доз рентгеновского излучения на поверхности аппарата.

Основными оперативно-техническими преимуществами рентгенотелевизионных аппаратов, использующих принцип "сканирующего луча" являются:

1.Отсутствие геометрических искажений теневого изображения контролируемого объекта за счёт применения узконаправленного рентгеновского луча рентгеногенератора и «Г-образного» расположения линейки детектора.

2.Обеспечение высокой контрастности и разрешающей способности теневого изображения контролируемого объекта за счёт высокостабильных энергетических и геометрических параметров сформированного рентгеновского луча и высокочувствительных преобразователей рентгеновского излучения малых размеров.

3.Возможность визуального телевизионного контроля достаточно плотных материалов и обнаружения предметов находящихся за преградами из них.

4.Высокая производительность контроля за счёт применения конвейерной системы перемещения объекта контроля.

5.Возможность контроля предметов ручной клади и багажа практически неограниченной длины за счёт возможности фрагмен­тарного контроля отдельных участков объекта, располагающегося на конвейере.

6.Высокая радиационная безопасность операторов и окружения за счёт применения специальных защитных устройств, обеспечивающих предельно низкие дозы рентгеновского излучения на поверхности аппарата.

7.Минимальная доза облучения инспектируемого объекта, обеспечивающая полную безопасность продуктов, фотоматериалов и лекарств.

8.Возможность углублённого анализа отдельных фрагментов теневого изображения за счёт применения специальных схем обработки изображения и схем выбора и масштабирования участков изображения.

9.Оперативно приемлемые габариты и вес аппаратов.

10.Возможность оперативной работы на аппарате операторов не имеющих специального технического образования.

11.Удобство работы операторов за счёт рационального вы­полнения клавиатуры пульта управления аппарата и оптимального расположения ТВ-монитора.

12.Создание комфортных условий для лиц, ручная кладь и багаж которых подвергается контролю, за счёт применения в аппарате низкорасположенного конвейера и рольганга.

Однако, применяемые таможенными службами аппараты скани­рующего типа, обладают определённым недостатком - позволяют на­блюдать и анализировать объекты за один цикл контроля только в одной плоскости, что в ряде случаев затрудняет распознавание и идентификацию предметов, что снижает вероятность обнаружения контрабандных вложений. Метод формирования нескольких проекций теневого рентгеновского изображения позволяет увеличить вероятность распознавания предметов за счёт увеличения количества информации, поступающей к оператору. Этот метод позволяет оператору наблюдать одновременно или последовательно изображение нескольких проекций контролируемого объекта. Такая аппаратура, как правило, строится по двухканальной схеме, при которой оператор может наблюдать и анализировать одновременно две проекции инспектируемого объекта на одном мониторе (стереоскопический метод) или последовательно каждую из проекций на одном мониторе (двухракурсный метод).

Для получения стереоскопического эффекта используют два источника рентгеновского излучения, расположенные на определённом расстоянии и под определённым углом друг к другу, или специальную рентгеновскую трубку, имеющую два катода, две управляющих сетки и один общий анод, и одну систему визуального изображения. Электронное управление каждым из двух генераторов или сетками одного генератора обеспечивает их попеременное включение. Электронные пучки попадают на объект контроля под разными углами, при этом теневые изображения, фиксируемые передающей телевизионной системой, оказываются расположенными под различными углами зрения.

Специальная система электронного управления, синхронизи­рованная с системой управления генераторами или сетками трубки, разделяют сигналы от передающей ТВ-трубки по двум каналам. На одном ТВ-приёмнике фиксируется изображение от одного генератора или одной половины рентгеновской трубки, на другом -от второго или другой части трубки. При совместном наблюдении двух экранов мониторов ТВ-системы достигается стереоэффект. Однако работа оператора одновременно с двумя экранами вызывает его быструю утомляемость и в целом нужного оперативного эффекта не достигается. Возможно формирование изображений каждого канала на одном мониторе, но это требует попеременного формирования каждого из ракурсных каналов на мониторе и синхронизированного восприятия оператором изображения с помощью специальных поляризационных стереоочков. На таком принципе (с двумя рентгеновскими генераторами) американская фирма "Астрофизике ресёч" создала модель рентгеновского стереоаппарата "Лайн-Скан-стерео"и продемонстрировала его работу на выставке "Оборудование для таможни-87" в Москве. По заявлению представителей английской и американской таможенных служб эта аппаратура не нашла своего оперативного применения из-за достаточной сложности электроники, значительной стоимости и необходимости оператору практически постоянно работать в стереоочках, что весьма затруднительно.

Поэтому наиболее оптимальным вариантом получения значительно большего объёма информации о содержимом инспектируемого объекта при незначительных усложнениях конструкции рентге-ноаппарата является двухракурсннй вариант получения теневого изображения за один цикл контроля, принцип образования которого представлен на Рис.2.7. Он построен на базе использования рентгеновской трубки с двумя разнесенными по высоте фокусными пятнами (точками выхода излучения), работающими в режиме последовательной коммутации и попеременной визуализации теневых изображений на одном мониторе, полученных от действия луча каждого ракурса и заложенных в блоке памяти аппарата. Экспериментами подтверждено, что при двухракурсном варианте контроля узнаваемость предметов в кон­тролируемых объектах, идентификация их истинных образов и при­надлежности примерно на 50-60% выше, чем при одноканальном одноракурсном просвечивании.

Двухракурсный метод получения теневого изображения контролируемого объекта

Рисунок. 2.7.

 

<== предыдущая лекция | следующая лекция ==>
Принципы построения досмотровой рентгеновской техники | Досмотровая рентгеновская техника, применяемая в таможенных органах
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1362; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.