Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Второе неравенство Чебышева

Читайте также:
  1. Вместо (111), часто используют неравенство
  2. Второе начало термодинамики
  3. Второе начало термодинамики
  4. ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ
  5. ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ И ЖИВОЙ ОРГАНИЗМ
  6. Второе начало термодинамики.
  7. Второе начало термодинамики. Невозможность создания вечных двигателей. Обратимые и необратимые процессы. Круговые процессы. Тепловые машины. Цикл Карно.
  8. Второе начало термодинамики. Энтропия
  9. Второе поколение шин ЭВМ.
  10. Второе поколение ЭВМ
  11. Второе правило Клечковского



Первое неравенство Чебышева

Вероятность того, что случайная величина окажется меньше определяется неравенством:

.

Доказательство: 1)- ДСВ, заданная законом распределения:

 

Очевидно, что (*)

С другой стороны: (**)

Из (*) следует:

Тогда из (**) следует:

2) - НСВ

Т.к. , то:

Вероятность того, что отклонение СВ от ее математического ожидания по абсолютной величине меньше числа определяется неравенством:

.

Доказательство: Рассмотрим СВ . Очевидно, что .

Так как , то по первому неравенстве Чебышева: .

Така как из , то .

Замечание: Очевидно, что .

 





Дата добавления: 2014-01-20; Просмотров: 192; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.198.221.13
Генерация страницы за: 0.007 сек.