КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Корреляционный анализ
Математические методы анализа и прогнозирования Корреляционный анализ Введение 2. Регрессионный анализ 3. Факторный анализ 4. Кластерный анализ 5. Анализ динамики и прогнозирования социально-правовых процессов Заключение
Между социально-экономическими явлениями и процессами возможны два вида зависимости: функциональная и стохастическая. При или иных параметров, характеризующих различные явления. Примеры такого рода зависимостей в социальной среде практически не встречаются. При стохастической (вероятностной) зависимости конкретному значению зависимой переменной соответствует набор значений объясняющей переменной. Это связано, прежде всего, с тем, что на зависимую переменную оказывает влияние ряд неучтенных факторов. Кроме того, сказываются ошибки измерения переменных: вследствие случайного разброса значений их значения могут быть указаны лишь с определенной вероятностью. В социально-экономической сфере приходится сталкиваться со многими явлениями, имеющими вероятностную природу. Так, число совершенных и раскрытых преступлений за фиксированный отрезок времени, число дорожно-транспортных происшествий в каком-либо регионе за определенное время - все это случайные величины. Для изучения стохастических взаимосвязей существуют специальные методы, в частности корреляционный анализ ("корреляция" соотношение, связь между имеющимися явлениями и процессами). Корреляционный анализ - это использование в определенной последовательности совокупности статистических методов обработки информации, позволяющее исследовать взаимосвязи между различными признаками. Задачей корреляционного анализа как метода математической статистики является установление формы и направления связи, а также измерение тесноты этой связи между изучаемыми случайными признаками. В статистике величина линейной зависимости между двумя признаками измеряется посредством простого (выборочного) коэффициента корреляции. Величина линейной зависимости одной переменной от нескольких других измеряется коэффициентом множественной ми после устранение части линейной зависимости, обусловленной связью этих переменных с другими переменными. По форме корреляционные связи могут быть линейными (прямолинейными) и нелинейными (криволинейными), а по направлению Прямая связь свидетельствует о том, что с увеличением (уменьшением) значений одного признака увеличиваются (уменьшаются) значения другого признака. При обратной связи увеличение (уменьшение) значений одного признака ведет к уменьшению (увеличению) значений другого признака. Главная задача корреляционного анализа - измерение тесноты связи - решается путем вычисления различных коэффициентов корреляции и проверки их значимости. Коэффициент корреляции может принимать значения при прямой связи от 0 до +1, а при обратной от -1 до 0. При коэффициентах, близких к 0, считается, что статистическая линейная связь между признаками отсутствует; при абсолютных значениях коэффициентов, меньших 0,3, - связь слабая; при значениях 0,3...0,5 связь умеренная; при 0,5...0,7 - связь значительная; при 0,7...0,9 - связь сильная; если значения коэффициентов больше 0,9, то связь считается очень сильной; если коэффициенты равны +1 или -1, то говорится о функциональной связи (что практически не встречается в статистических исследованиях). Однако такая упрощенная оценка силы связи не всегда корректна, так как степень уверенности в наличии статистической связи зависит от объема исследуемой совокупности. Чем меньше объем совокупности, тем большим должно быть значение коэффициента корреляции для принятия гипотезы о существовании зависимости между признаками. С целью количественного измерения степени уверенности в существовании линейной статистической связи между признаками введены понятия уровня значимости и пороговых (критических) значений коэффициента корреляции. Проверка значимости полученного коэффициента корреляции состоит в сравнении расчетного значения с критическим. При данном числе измерений и задаваемом уровне значимости находится критическое значение, которое сравнивается с расчетным. Если расчетное больше критического, то связь значима, если меньше, то связь или отсутствует (а такое значение коэффициента корреляции объясняется случайными отклонениями), или выборка мала для ее выявления. Для определения существования и величины линейной зависимости между двумя переменными X и Y необходимо осуществить две процедуры. Первая заключается в графическом отображении точек [{Xi,Yi},i=1,n] на плоскость [XY]. Полученный график называется допустимости предположения о линейной зависимости между переменными. Если такое предположение допустимо, то необходимо выразить в количественном виде величину линейной связи. Для этого используется выборочный коэффициент корреляции:
где n - количество измерений, Xi,Yi - i-е значения, X,Y - средние значения, sx, sy - среднеквадратические отклонения переменных X и Y соответственно. В теории статистического анализа корреляционная связь определяется как линейная зависимость в условиях нормальности распределения анализируемых переменных. Поэтому для корректного применения корреляционных методов необходимо обосновать близость распределения переменных к нормальному и формы связи к линейной. В противном случае необходимо применять более сложные приемы анализа или другие коэффициенты связи. Достаточно простой в вычислительном отношении способ проверки нормальности эмпирического распределения состоит в оценке следующего отношения: , где C - среднее абсолютное отклонение, s - среднеквадратическое отклонение. Если указанное неравенство выполняется, то можно говорить о нормальности эмпирических распределений и корректности применения коэффициента корреляции как меры линейной статистической связи между переменными. В общем случае на уровень преступности влияет множество факторных признаков. К ним относятся социально-экономические, географические и климатические, демографические и др., а также признаки, характеризующие силы и средства, степень организованности органа внутренних дел. Однако даже при наличии сильной статистически значимой связи между двумя переменными нельзя быть полностью уверенным в их причинно-следственной обусловленности, так как могут существовать другие причины (факторы), определяющие их совместную статистическую взаимосвязь. Статистические выводы должны быть всегда обоснованы надежной теоретической концепцией. В то же время отсутствие статистически значимой связи не говорит об отсутствии причинно-следственных отношений, а заставляет искать другие пути и средства ее выявления, если содержательная концепция и практический опыт указывают на ее возможное существование.
Дата добавления: 2014-01-20; Просмотров: 1971; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |