КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Регрессионный анализ
Понятия корреляции и регрессии непосредственно связаны между собой. В корреляционном и регрессионном анализе много общих вычислительных приемов. Они используются для выявления причинно-следственных соотношений между явлениями и процессами. Однако, если корреляционный анализ позволяет оценить силу и направление стохастической связи, то регрессионный анализ - еще и форму зависимости. Регрессия может быть: а) в зависимости от числа явлений (переменных): - простой (регрессия между двумя переменными); - множественной (регрессия между зависимой переменной (y) и несколькими объясняющими ее переменными (х1, х2...хn); б) в зависимости от формы: - линейной (отображается линейной функцией, а между изучаемыми переменными существуют линейные соотношения); - нелинейной (отображается нелинейной функцией, между изучаемыми переменными связь носит нелинейный характер); в) по характеру связи между включенными в рассмотрение переменными: - положительной (увеличение значения объясняющей переменной приводит к увеличению значения зависимой переменной и наоборот); - отрицательной (с увеличением значения объясняющей переменной значение объясняемой переменной уменьшается); г) по типу: - непосредственной (в этом случае причина оказывает прямое воздействие на следствие, т.е. зависимая и объясняющая переменные связаны непосредственно друг с другом); - косвенной (объясняющая переменная оказывает опосредованное действие через третью или ряд других переменных на зависимую переменную); - ложной (нонсенс регрессия) - может возникнуть при поверхностном и формальном подходе к исследуемым процессам и явлениям. Примером бессмысленных является регрессия, устанавливающая связь между уменьшением количества потребляемого алкоголя в нашей стране и уменьшением продажи стирального порошка. При проведении регрессионного анализа решаются следующие основные задачи: 1. Определение формы зависимости. 2. Определение функции регрессии. Для этого используют математическое уравнение того или иного типа, позволяющее, во-первых, установить общую тенденцию изменения зависимой переменной, а, во-вторых, вычислить влияние объясняющей переменной (или нескольких переменных) на зависимую переменную. 3. Оценка неизвестных значений зависимой переменной. Полученная математическая зависимость (уравнение регрессии) позволяет определять значение зависимой переменной как в пределах интервала заданных значений объясняющих переменных, так и за его пределами. В последнем случае регрессионный анализ выступает в качестве полезного инструмента при прогнозировании изменений социально-экономических процессов и явлений (при условии сохранения существующих тенденций и взаимосвязей). Обычно длина временного отрезка, на который осуществляется прогнозирование, выбирается не более половины интервала времени, на котором проведены наблюдения исходных показателей. Можно осуществить как пассивный прогноз, решая задачу экстраполяции, так и активный, ведя рассуждения по известной схеме "если..., то" и подставляя различные значения в одну или несколько объясняющих переменных регрессии. Для построения регрессии используется специальный метод, получивший название метода наименьших квадратов. Этот метод имеет преимущества перед другими методами сглаживания: сравнительно простое математическое определение искомых параметров и хорошее теоретическое обоснование с вероятностной точки зрения. При выборе модели регрессии одним из существенных требований к ней является обеспечение наибольшей возможной простоты, позволяющей получить решение с достаточной точностью. Поэтому для установления статистических связей вначале, как правило, рассматривают модель из класса линейных функций (как наиболее простейшего из всех возможных классов функций): где bi, b2...bj - коэффициенты, определяющие влияние независимых переменных хij на величину yi; аi - свободный член; ei - случайное отклонение, которое отражает влияние неучтенных факторов на зависимую переменную; n - число независимых переменных; N число наблюдений, причем должно соблюдаться условие (N. n+1). Линейная модель может описывать весьма широкий класс различных задач. Однако на практике, в частности в социально-экономических системах, подчас затруднительно применение линейных моделей из-за больших ошибок аппроксимации. Поэтому нередко используются функции нелинейной множественной регрессии, допускающие линеаризацию. К их числу, например, относится производственная функция (степенная функция Кобба-Дугласа), нашедшая применение в различных социально-экономических исследованиях. Она имеет вид: , где b0 - нормировочный множитель, b1...bj - неизвестные коэффициенты, ei - случайное отклонение. Используя натуральные логарифмы, можно преобразовать это уравнение в линейную форму: Полученная модель позволяет использовать стандартные процедуры линейной регрессии, описанные выше. Построив модели двух видов (аддитивные и мультипликативные), можно выбрать наилучшие и провести дальнейшие исследования с меньшими ошибками аппроксимации. Существует хорошо развитая система подбора аппроксимирующих функций - методика группового учета аргументов (МГУА). О правильности подобранной модели можно судить по результатам исследования остатков, являющихся разностями между наблюдаемыми величинами yi и соответствующими прогнозируемыми с помощью регрессионного уравнения величинами yi. В этом случае для проверки адекватности модели рассчитывается средняя ошибка аппроксимации: Модель считается адекватной, если e находится в пределах не более 15%. Особо подчеркнем, что применительно к социально-экономическим системам далеко не всегда выполняются основные условия адекватности классической регрессионной модели. Не останавливаясь на всех причинах возникающей неадекватности, назовем лишь мультиколлинеарность - самую сложную проблему эффективного применения процедур регрессионного анализа при изучении статистических зависимостей. Под мультиколлинеарностью понимается наличие линейной связи между объясняющими переменными. Это явление: а) искажает смысл коэффициентов регрессии при их содержательной интерпретации; б) снижает точность оценивания (возрастает дисперсия оценок); в) усиливает чувствительность оценок коэффициентов к выборочным данным (увеличение объема выборки может сильно повлиять на значения оценок). Существуют различные приемы снижения мультиколлинеарности. Наиболее доступный способ - устранение одной из двух переменных, если коэффициент корреляции между ними превышает значение, равное по абсолютной величине 0,8. Какую из переменных оставить решают, исходя из содержательных соображений. Затем вновь проводится расчет коэффициентов регрессии. Использование алгоритма пошаговой регрессии позволяет последовательно включать в модель по одной независимой переменной и анализировать значимость коэффициентов регрессии и мультиколлинеарность переменных. Окончательно в исследуемой зависимости остаются только те переменные, которые обеспечивают необходимую значимость коэффициентов регрессии и минимальное влияние мультиколлинеарности.
Дата добавления: 2014-01-20; Просмотров: 2207; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |