КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Определение и свойства многочленов Чебышева
МНОГОЧЛЕНЫ ЧЕБЫШЕВА И НАИЛУЧШИЕ РАВНОМЕРНЫЕ ПРИБЛИЖЕНИЯ 2 18 Глава 2 Дается определение многочленов Чебышева первого рода и изучаются их свойства. Показывается, что погрешность интерполирования гладкой функции многочленом фиксированной степени будет наименьшей, когда в качестве узлов интерполяции используются корни многочленов Чебышева. Приводится (без доказательства) теорема о чебышевском альтернате, служащая теоретической основой построения наилучших равномерных приближений, и рассматриваются простейшие ситуации, когда такие многочлены могут быть построены. Обсуждается идея использования разложения функций в степенные ряды для получения многочленов, близких к многочленам наилучших равномерных приближений. Определение2.1. Многочленом Чебышева^ называется функция Т„ (х):= cos(n arccos x), (2.1) где neN0, xe [-1,1]. Прежде всего убедимся, что функция Тп(х), представленная с помощью тригонометрических функций, на самом деле является многочленом при любом η = О,1, 2, Непосредственной подстановкой в (2.1) значений η-0 и η -1 получаем Tq(χ) = 1, Τ (χ) = χ. * ; Чебышёв Пафнутий Львович (1821—1894) — знаменитый русский математик. Его работы о многочленах наилучшего равномерного приближения легли в основу конструктивной теории функций. Стандартное обозначение Т„(х) можно соотнести с немецким написанием фамилии Tschebyschew.
Дата добавления: 2014-01-20; Просмотров: 382; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |