Для функций многих переменных определяются те же понятия, что и для функции одной переменной. Например, можно дать определения предела и непрерывности функции.
Опр. Число А называется пределом функции двух переменных z=f(x,y) при , и обозначается , если для любого положительного числа найдется положительное число , такое, что если точка удалена от точки на расстояние меньше , то величины f(x,y) и А отличаются меньше чем на .
Опр. Если функция z=f(x,y) определена в точке и имеет в этой точке предел, равный значению функции , то она называется непрерывной в данной точке.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление