КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Представление в компьютере вещественных чисел
Лекция 3 Умножение и деление В компьютерах умножение производится как последовательность сложений и сдвигов разрядов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматором, который до начала выполнения операции содержит число ноль. В процессе выполнения операции в нем поочередно размещаются множимое и результаты промежуточных сложений, а по завершении операции — окончательный результат. Другой же регистр АЛУ, участвующий в выполнении операции умножения, вначале содержит множитель. Затем по мере выполнения сложений содержащееся в нем число уменьшается, пока не достигнет нулевого значения. Деление для компьютера является еще более сложной операцией, чем умножение. Обычно деление реализуется путем многократного прибавления к делимому дополнительного кода делителя.
При их написании в программе вместо запятой принято писать точку. Так, например, число 5 — целое, а числа 5.1 и 5.0 — вещественные. Для отображения чисел, принимающих значения из достаточно широкого диапазона (от очень маленьких до очень больших), используется форма записи чисел с порядком основания системы счисления. Например, десятичное число 1.25 можно в этой форме представить так: 1.25= 1.25×100 = 0.125×101 = 0.0125×102 =..., или: 12.5×10–1 = 125.0×10–2 = 1250.0×10–3.
Если “плавающая” точка расположена в мантиссе после нуля перед первой значащей цифрой, то при фиксированном количестве разрядов, отведённых под мантиссу, обеспечивается запись максимального количества значащих цифр числа, то есть максимальная точность представления числа в машине. Из этого следует вывод:
Такое, наиболее точное для компьютера, представление вещественных чисел называется нормализованным. Мантиссу и порядок q- ичного числа принято записывать в системе с основанием q, а само основание обозначают всегда в десятичной системе. Примеры нормализованного представления вещестенных чисел: Десятичная система Двоичная система 753.1510 = 0.75315×103; –101.012 = –0.10101×211 (порядок 112 = 310) –0.00003410 = –0.34×10-4; 0.0000112 = 0.11×2-100 (порядок –1002 = – 410) Вещественные числа в компьютерах различных типов записываются по-разному. При этом компьютер обычно предоставляет программисту возможность выбора из нескольких числовых форматов наиболее подходящего для конкретной задачи — с использованием четырех, шести, восьми или десяти байтов. В качестве примера приведем характеристики форматов вещественных чисел, используемых IBM-совместимыми персональными компьютерами:
Из этой таблицы видно, что форма представления чисел с плавающей точкой позволяет записывать числа с высокой точностью и из весьма широкого диапазона.
Дата добавления: 2014-01-20; Просмотров: 379; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |