КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вопрос №3. Электроемкость уединенного проводника. Конденсаторы и их электроемкость. Соединения конденсаторов
Рассмотрим заряженный проводник, находящийся так далеко от других тел, что влиянием их электростатических полей можно пренебречь. Опыт показывает, что для уединенного заряженного проводника, помещенного в сплошной однородный диэлектрик, справедливо соотношение, которое устанавливает пропорциональную зависимость между зарядом q и потенциалом φ этого проводника:
Величина С в выражении (1.3) называется электроемкостью проводника. Согласно формуле (1.3). В СИ единица электроемкости — фарад (Ф):
Определим электроемкость С заряженного уединенного проводящего шара радиусом R, находящегося в среде с диэлектрической проницаемостью ε. В этом случае: .
Из формул (1.3) и (1.4) следует для определения электроемкости С уединенного шара.
Опыт показывает, что электроемкость С проводящих тел определяется только их геометрическими размерами(формой) и диэлектрической проницаемостью среды, т.е. не зависит от величины заряда. Задача 1. Определим радиус шара, обладающего электроемкостью С=1Ф, при ε = 1, т.е. в вакууме (εо =8,85 · 10-12 Ф/м):
Полученное значение R намного больше радиуса Земли (R3 ≈ 6,4·10-3 км). Это означает, с одной стороны, что С= 1 Ф является очень большой электроемкостью. В связи с этим широко используются дольные единицы электроемкости (мФ, мкФ, пФ и т.д.). С другой стороны, проведенная оценка показывает, что уединенные проводники обладают малой емкостью. Поэтому в технических приложениях используются конденсаторы и батареи конденсаторов, соединенных тем или иным способом. Два разноименно заряженных проводника определенной геометрической формы при некоторой взаимной ориентации относительно друг друга способны создавать электростатическое поле, которое сосредоточено (локализовано) в ограниченной области пространства между этими проводниками. Такая система двух проводников называется конденсатором, а сами проводники — его обкладками. Электроемкость конденсатора:
Здесь q – заряд одной из обкладок (для определенности положительный); φ1 – φ2 = U — разность потенциалов между обкладками конденсатора, причем поверхности каждой обкладки являются эквипотенциальными. В зависимости от формы обкладок различают плоский, сферический и цилиндрический конденсаторы, емкости которых определяются по формулам, приведенным на рис.3.
Задача2. Рассчитать емкость плоского конденсатора (рис. 3, а), который состоит из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга и имеющих заряды +q и -q. Решение: Если расстояние между пластинами мало по сравнению с их линейными размерами, то краевыми эффектами можно пренебречь и поле между обкладками считать однородным. Тогда разность потенциалов Δφ между обкладками φ1 – φ2= Ed [φ1 – φ2 = σ / εε0d]. Если между обкладками находится диэлектрик (ε > 1), то поле Е уменьшается в ε раз (Е = σ / εε0), так что для емкости плоского конденсатора(q =σ · S) получим выражение, содержащее только геометрические размеры конденсатора и диэлектрическую проницаемость среды:
Кроме электроемкости конденсаторы характеризуются пробивным напряжением, которое зависит от свойств диэлектрика, помещенного между обкладками конденсатора. В случае необходимости конденсаторы можно соединять в батареи. Электроёмкость батареи из нескольких конденсаторов (i = 1,2, 3…n) определяется по формулам:
б)
Формула для параллельного соединения получена из условия, что общий заряд при Ui = U, вторая из условия, что общее напряжение (qi = q).
Дата добавления: 2014-01-20; Просмотров: 1136; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |