КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Чирплет
Применение Графическое представление
Временное и спектральное представления WAVE-вейвлета
Временное и спектральное представления вейвлета Морле Вейвлет-преобразование широко используется для анализа сигналов. Помимо этого, оно находит большое применение в области сжатия данных. В дискретном вейвлет-преобразовании наиболее значимая информация в сигнале содержится при высоких амплитудах, а менее полезная — при низких. Сжатие данных может быть получено за счет отбрасывания низких амплитуд. Вейвлет-преобразование позволяет получить высокое соотношение сжатия в сочетании с хорошим качеством восстановленного сигнала. Вейвлет-преобразование было выбрано для стандартов сжатия изображений JPEG2000 и ICER. Однако, при малых сжатиях вейвлет-преобразование уступает по качеству в сравнении с оконным Фурье-преобразованием, которое лежит в основе стандарта JPEG. Выбор конкретного вида и типа вейвлетов во многом зависит от анализируемых сигналов и задач анализа. Для получения оптимальных алгоритмов преобразования разработаны определенные критерии, но их еще нельзя считать окончательными, т.к. они являются внутренними по отношению к самим алгоритмам преобразования и, как правило, не учитывают внешних критериев, связанных с сигналами и целями их преобразований. Отсюда следует, что при практическом использовании вейвлетов необходимо уделять достаточное внимание проверке их работоспособности и эффективности для поставленных целей по сравнению с известными методами обработки и анализа. Примечания Достоинства:
Недостатки:
Материал из Википедии — свободной энциклопедии Перейти к: навигация, поиск
Сопоставление волна(wave)- вейвлет, ЛЧМ-сигнал(chirp)- чирплет В обработке сигналов чирплет преобразование — это скалярное произведение входного сигнала с семейством элементарных математических функций, именуемых чирплетами.
Дата добавления: 2014-01-20; Просмотров: 635; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |