КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Интерпретация моделей с распределенным лагом
ТЕМА 7. ДИНАМИЧЕСКИЕ ЭКОНОМЕТРИЧЕСКИЕ МОДЕЛИ Можно выделить два основных типа динамических эконометрических моделей. К моделям первого типа относятся модели авторегрессии и модели с распределенным лагом, в которых значения переменной за прошлые периоды времени (лаговые переменные) непосредственно включены в модель. Модели второго типа учитывают динамическую информацию в неявном виде. В эти модели включены переменные, характеризующие ожидаемый или желаемый уровень результата, или одного из факторов в момент времени t. Этот уровень считается неизвестным и определяется экономическими единицами с учетом информации, которой они располагают в момент (t — 1). Величину l, характеризующую запаздывание в воздействии фактора на результат, называют в эконометрике лагом, а временные ряды самих факторных переменных, сдвинутые на один или более моментов времени, — лаговыми переменными. Эконометрическое моделирование охарактеризованных выше процессов осуществляется с применением моделей, содержащих не только текущие, но и лаговые значения факторных переменных. Эти модели называются моделями с распределенным лагом. Модель вида является примером модели с распределенным лагом. Эта модель говорит о том, что если в некоторый момент времени t происходит изменение независимой переменной xt то это изменение будет влиять на значения переменной у в течение l следующих моментов времени. Коэффициент регрессии b 0 при переменной xt характеризует среднее абсолютное изменение yt при изменении xt на 1 ед. своего измерения в некоторый фиксированный момент времени t, без учета воздействия лаговых значений фактора х. Этот коэффициент называют краткосрочным мультипликатором. В момент (t + 1) совокупное воздействие факторной переменной xt на результату, составит (bо + b1) усл. ед., в момент (t+2) это воздействие можно охарактеризовать суммой (bо + b1 + b2) и т. д. Полученные таким образом суммы называют промежуточными мультипликаторами. С учетом конечной величины лага можно сказать, что изменение переменной xt в момент t на 1 усл. ед. приведет к общему изменению результата через / моментов времени на (b о + b 1 +...+ bl) абсолютных единиц. Введем следующее обозначение: bо + b 1+...+ bl = b Величину b называют долгосрочным мультипликатором. Он показывает абсолютное изменение в долгосрочном периоде t + l результата у под влиянием изменения на 1 ед. фактора х. Предположим β j = bj/b,j = O:l.) Назовем полученные величины относительными коэффициентами модели с распределенным лагом. Если все коэффициенты bj имеют одинаковые знаки, то для любого j О < βj; < 1 и В этом случае относительные коэффициенты βj являются весами для соответствующих коэффициентов b j. Каждый из них измеряет долю общего изменения результативного признака в момент времени (t+j). Зная величины βj, с помощью стандартных формул можно определить еще две важные характеристики модели множественной регрессии: величину среднего лага и медианного лага. Средний лаг определяется по формуле средней арифметической взвешенной: и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент времени t. Небольшая величина среднего лага свидетельствует об относительно быстром реагировании результата на изменение фактора, тогда как высокое его значение говорит о том, что воздействие фактора на результат будет сказываться в течение длительного периода времени. Медианный лаг — это величина лага, для которого Это тот период времени, в течение которого с момента времени t будет реализована половина общего воздействия фактора на результат. Интерпретация моделей авторегрессии Наряду с лаговыми значениями независимых, или факторных, переменных на величину зависимой переменной текущего периода могут оказывать влияние ее значения в прошлые моменты или периоды времени. Например, потребление в момент времени t формируется под воздействием дохода текущего и предыдущего периодов, а также объема потребления прошлых периодов, например потребления в период (t — 1). Эти процессы обычно описывают с помощью моделей регрессии, содержащих в качестве факторов лаговые значения зависимой переменной, которые называются моделями авторегрессии. Пусть имеется следующая модель: Как и в модели с распределенным лагом, b0 в этой модели характеризует краткосрочное изменение yt под воздействием изменения хt на 1 ед. Однако промежуточные и долгосрочный мультипликаторы в моделях авторегрессии несколько иные. К моменту времени (t + 1) результатизменился под воздействием изменения изучаемого фактора в момент времени t наед., апод воздействием своего изменения в непосредственно предшествующий момент времени — на с1 ед. Таким образом, общее абсолютное изменение результата в момент (t + 1) составитед. Аналогично в момент времени (t + 2) абсолютное изменение результата составитед. и т. д. Следовательно, долгосрочный мультипликатор в модели авторегрессии можно рассчитать как сумму краткосрочного и промежуточных мультипликаторов: Учитывая, что практически во все модели авторегрессии вводится так называемое условие стабильности, состоящее в том, что коэффициент регрессии при переменнойпо абсолютной величине меньше единицы(|c1| < 1), соотношение (7.8) можно преобразовать следующим образом: где Отметим, что такая интерпретация коэффициентов модели авторегрессии и расчет долгосрочного мультипликатора основаны на предпосылке о наличии бесконечного лага в воздействии текущего значения зависимой переменной на ее будущие значения
Дата добавления: 2014-01-20; Просмотров: 1042; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |