Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные понятия аналитической механики

Читайте также:
  1. I. Международная торговая практика широко использует такие понятия как мировые деньги, мировые рынки, мировые цены
  2. I. Основные задачи
  3. I. Основные категории страхования.
  4. I. Основные показатели вариации
  5. I. Основные положения
  6. I. Основные этапы развития знаний об эндокринных железах.
  7. I. Сущность и основные функции перестрахования.
  8. I.3. Основные принципы психологии.
  9. II. Основные задачи и функции
  10. II. Основные направления реформы
  11. II. Основные направления улучшения использования ОФ и производственных мощностей.
  12. II. Основные направления улучшения использования ОФ и производственных мощностей.



ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ МЕХАНИКИ

ЛЕКЦИЯ 16

На прошлой лекции мы закончили изучение общих теорем динамики и их применение в динамике твердого тела. В некоторых случаях общие теоремы динамики позволяют до конца решить задачу определения движения механической системы. В тех случаях, когда нет необходимости знать движение каждой материальной точки, теоремы позволяют определить изменение таких общих характеристик, как количество движения, кинетический момент, кинетическая энергия, центр масс.

Однако в случаях несвободных систем, приходится при этом вводить неизвестные реакции связи, определение которых не всегда требуется по условиям задачи и определение которых, к тому же, бывает затруднительно, или вовсе невозможно.

Раздел теоретической механики, называемый аналитической механикой,изучает общие методы, позволяющие составлять дифференциальные уравнения движения несвободных механических систем, не вводя реакции идеальных связей.

 

Связи и их классификация

При изучении динамики несвободной материальной точки мы уже рассматривали связи. Обобщим эти понятия на систему материальных точек.

Механическая система называется свободной, если ее точки могут занимать любые положения, а их скорости могут принимать произвольные значения. В противном случае механическая система называется несвободной. Для несвободных систем должны быть указаны ограничения, накладываемые на координаты или скорости или на те и другие. Эти ограничения, как мы знаем, называются связями. Они могут быть записаны в виде уравнений или неравенств.

В общем случае уравнение связи можно записать в виде:

или

(16.1)

Если в соотношении (16.1) реализуется только знак равенства, то связь называется удерживающей, если в виде неравенства, то – неудерживающей. Если уравнение связи не содержит скорости точек, т.е.

то (16.2)

связь называется геометрической или голономной.

Если же в уравнение связи входят скорости точек, то связь называется кинематической или дифференциальной. Если уравнение кинематической связи нельзя проинтегрировать и нельзя представить в виде (16.2), то такая связь называется неголономной.

Пример 1. Гантель (рис. 16.1).

Две материальные точки связанные невесомым стержнем называются «гантелью». Пусть длина стержня равна l.

Рис. 16.1 Тогда координаты материальных точек удовлетворяют уравнению геометрической связи:  

Пример 2. Кривошипно-ползунный механизм (рис. 16.2).





Дата добавления: 2014-01-20; Просмотров: 227; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.81.59.211
Генерация страницы за: 0.007 сек.