Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сверла для сверления глубоких отверстий

К глубоким отверстиям обычно относят отверстия, глубина которых превышает 5d. Однако уже при h>3d вслучае сверления отверстий спи­ральными сверлами наблюдаются трудности с подводом СОЖ в зону ре­зания и удалением стружки из отверстия, что приводит к снижению стойкости инструмента. Поэтому на практике применение инструментов для сверления глубоких отверстий обычно начинается с глубин, больших 3d.

Основные трудности при сверлении глубоких отверстий заключают­ся: 1) в сложных условиях подвода СОЖ в зону резания и отвода струж­ки; 2) в уводе осей отверстий; 3) в погрешностях размера и формы отвер­стий в радиальном и продольном сечениях.

Улучшить условия отвода стружки из отверстий при использовании спиральных сверл можно за счет увеличения угла наклона канавок до 40...60° и обеспечения надежного дробления стружки. В противном слу­чае приходится периодически выводить сверло из отверстия для освобо­ждения инструмента от стружки, что значительно снижает производи­тельность, хотя при этом увод оси отверстия несколько уменьшается. Лучшие результаты дает использование внутреннего напорного подвода СОЖ в зону резания, которое обеспечивает не только надежный отвод стружки из отверстия, но и отвод тепла из зоны резания, благодаря чему повышается стойкость сверл. Причем эффективность СОЖ будет тем выше, чем выше скорость ее протекания через зону резания, которая оп­ределяется давлением и количеством (расходом) подаваемой жидкости.

На практике при сверлении отверстий глубиной до 20d на универ­сальном оборудовании часто используют спиральные сверла удлинен­ной серии или с нормальной длиной режущей части и длинным хво­стовиком (рис. 4.11, а ), равным глубине отверстия. В этом случае для освобождения сверла от стружки в процессе сверления применяется ав­томатический ввод-вывод инструмента из отверстия.


Рис. 4.11. Спиральные сверла для глубокого сверления: а - четырехленточное с длинным хвостовиком; б - шнековое; в - с внутренним напорным охлаждением

С целью уменьшения увода оси отверстий у таких сверл рекоменду­ется вышлифовывать на спинках четыре ленточки и увеличивать на­сколько возможно диаметр сердцевины (рис. 4.11, а). Некоторые фирмы выпускают такие сверла с увеличенным объемом канавок и большим уг­лом их наклона к оси инструмента, доходящим до ω = 40°.

Для улучшения отвода стружки без вывода сверла из отверстия бы­ли предложены шнековые сверла (рис. 4.11, б), которые применяются чаще всего для сверления отверстий глубиной до (30...40)>d в деталях из чугуна и других хрупких металлов. Для сверления отверстий в сталях шнековые сверла применяются значительно реже и при этом наблюдает­ся повышенный увод сверла. В отличие от стандартных спиральных сверл, они имеют большой угол наклона винтовых канавок ω = 60°, уве­личенный диаметр сердцевины do= (0.30…0.35)d. Полированные канавки имеют в осевом сечении прямолинейный треугольный профиль с рабочей стороной, перпендикулярной к оси сверла. Направляющие ленточки шнекового сверла примерно в 2 раза уже, чем у стандартных спиральных сверл. Так как угол ω у них очень большой, то для формирования рабоче­го клина с нормальным углом заострения необходима подточка по пе­редней поверхности под углом γ = 12... 18°. Задний угол при плоскостной заточке α = 12... 15°. При этом заточка сверла существенно усложняется.

Для обеспечения надежного стружкодробления без вывода сверл из отверстия при одновременном повышении стойкости применяют также спиральные быстрорежущие сверла с каналами для внутреннего подво­да СОЖ. В нашей стране такие сверла изготавливаются диаметром от 10 до 30 мм (рис. 4.11, в). Их недостатки – повышенная трудоемкость изготовления, необходимость иметь для подвода СОЖ специальные па­троны и насосные станции, а также ограждения от сходящей стружки и брызг СОЖ.

Увод сверл с двумя симметрично расположенными главными режу­щими кромками происходит из-за малой жесткости консольно закреп­ляемых инструментов, неизбежных погрешностей заточки режущих кро­мок, при наличии разнотвердости заготовок по сечению и т.д.

Самым эффективным способом, позволяющим свести до минимума увод и повысить точность отверстий, является способ базирования ре­жущей части инструмента с опорой на обработанную поверхность. С этой целью предусматривается такое расположение режущих кромок, когда заведомо создается неуравновешенная радиальная составляющая силы резания, прижимающая опорные направляющие корпуса к поверх­ности отверстия, которые обработаны впереди идущими режущими кромками. При этом засверливание должно производиться по кондукторной втулке или по предварительно подготовленному в заготов­ке отверстию глубиной (0,5... 1.0 )d.

Исторически первой и наиболее простой конструкцией сверла глу­бокого сверления являются пушечные сверла, название которых говорит об области их первоначального назначения. Такое сверло (рис. 4.12, а) представляет собой стержень большой длины, равной глубине обрабаты­ваемого отверстия, срезанный в рабочей части примерно до половины диаметра и заточенный с торца с задним углом а. Во избежание заедания сверла в отверстии передняя грань расположена выше оси инструмента на величину 0,2...0,5 мм. Сверло имеет одну главную режущую кромку, перпендикулярную к оси. С другой стороны от оси сверла по торцу де­лают срез под углом 10°, отступив от оси на расстояние 0,5 мм. Со сторо­ны вспомогательной режущей кромки на наружной поверхности срезают лыску под углом 30° с оставлением цилиндрической ленточки шириной f = 0,5 мм. У пушечного сверла передний угол γ = 0°, а задний α = 8...10°. Для снижения осевой составляющей силы резания передняя поверхность пушечного сверла выполняется по радиусу R с очень небольшим заниже­нием около оси инструмента. В процессе сверления радиальная односто­ронне направленная нагрузка воспринимается цилиндрической поверх­ностью сверла, опирающейся на стенку обработанного отверстия.

Пушечное сверло работает в тяжелых условиях, так как не обеспечи­вается непрерывный отвод стружки, в связи с чем приходится сверло пе­риодически выводить из отверстия; из-за низкой поперечной жесткости и большой ширины срезаемого слоя сверло склонно к вибрациям, поэтому работа ведется с малыми подачами. Такие сверла в настоящее время приме­няются редко, только в условиях единичного и мелкосерийного производств.

Ружейные сверла (рис. 4.12, 6 ) в отличие от пушечных имеют внутренний канал для подвода СОЖ и прямую (иногда винтовую) канав­ку для наружного отвода пульпы (смесь стружки и СОЖ). Они применя­ются для сверления отверстий глубиной (5...100)d и диаметром 1...30мм. Первоначально ружейные сверла использовали для сверления стволов огнестрельного оружия. В настоящее время ружейные сверла получили широкое распространение во всех отраслях машиностроения, главным образом для сверления глубоких отверстий на специальных станках в условиях крупносерийного и массового производств. Благодаря оснащению твердым сплавом и внутренней подаче СОЖ они обеспечи­вают высокую производительность при сверлении отверстий с мини­мальным уводом оси при высокой точности (H8...H9) и низкой шерохо­ватости поверхности отверстий (Ra0,32...1,25).


 

Рис. 4.12. Сверла для сверления глубоких отверстий:

а-пушечное (d = 3...36мм); б-ружейное (d= 1...30 мм)


Типовая конструкция ружейного сверла состоит из режущего твер­досплавного наконечника 1 (рис. 4.12, б) с отверстием для подвода СОЖ, трубчатого стебля 2 из стали типа ЗОХМА с V-образной канавкой для отвода стружки, полученной методом холодной пластической деформа­ции, и цилиндрического хвостовика 3 для крепления на станке. Ружейные сверла диаметром менее 2 мм ряд зарубежных фирм изготавливает цель­ными твердосплавными.

Геометрические параметры режущей части ружейного сверла пока­заны на рис. 4.12, б. Главная режущая кромка для снижения радиальной нагрузки - ломаная, состоит из двух полукромок с углами в плане φ1 = 30° и φ2 = 20°. Для восприятия суммарной радиальной нагрузки у сверл ма­лых диаметров имеется опорная цилиндрическая поверхность, а у сверл d > 10 мм – две опорные направляющие, между которыми должен прохо­дить вектор радиальной составляющей сил резания и трения.

Для снижения сил трения и во избежание защемления сверла в от­верстии предусматривается обратная конусность по диаметру режущей части (наконечника) в пределах 0,06...0,10 мм на 100 мм длины. На вспомогательной режущей кромке оставляется цилиндрическая ленточка шириной f =0,1...0,5 мм.

При заточке ружейного сверла (рис. 4.12, б ) необходимо контроли­ровать размер т, который, во избежание врезания торцов, направляющих в дно отверстия, должен быть не меньше двух-трех значений подачи сверла на один оборот. На переднем торце трубчатого стебля фрезерует­ся паз, в который припаивается твердосплавный наконечник. С противо­положного конца стебель впаивается в цилиндрический хвостовик, имеющий диаметр на 6... 10 мм больше, чем диаметр стебля.

Технические требования к изготовлению ружейных сверл весьма жесткие. Так, рабочая часть шлифуется с допуском по h5 или h6, а хво­стовик – по h6. Радиальное биение наконечника относительно хвостовика не более 0,01...0,02 мм. При настройке операции необходимо обеспечить соосность шпинделя и сверла в пределах 0,01 мм, а соосность кондуктор­ной втулки и шпинделя станка – в пределах 0,005 мм.

Так как твердосплавные направляющие выглаживают поверхность отверстия, СОЖ должна быть только на масляной основе с противозадирными присадками (S, Cl, P). Применение эмульсий на водной основе приводит к затиранию направляющих и возникновению вибраций.


Давление и расход СОЖ зависят от диаметра сверла. Так, например, при малых диаметрах сверл давление СОЖ достигает 9... 10 МПа.

К числу недостатков ружейных сверл можно отнести малые попе­речную и крутильную жесткости из-за ослабленного канавкой стебля. По этой причине приходится снижать подачу, а следовательно, и производи­тельность процесса сверления.

Сверла и сверлильные головки БТА* отличаются тем, что при ма­лых диаметрах сверления (рис. 4.13, а ) твердосплавные режущие и на­правляющие пластины напаиваются непосредственно на трубчатый сте­бель, а при больших диаметрах - на головки (рис. 4.13, б...д ), навинчи­ваемые на стебель.

Головки изготавливают различными по конструктивному исполне­нию: однокромочными (рис. 4.13, б, в), многокромочными (рис. 4.13, г, д ), перетачиваемыми, неперетачиваемыми, с напайными или сменными (d > 20 мм) режущими и направляющими пластинами.

В отличие от ружейных сверл, сверла и головки БТА имеют толсто­стенный стебель кольцевого сечения и работают с наружной подачей СОЖ между стенками стебля и обработанного отверстия и с внутренним отводом СОЖ и стружки через отверстия в головке и стебле. Подача СОЖ произво­дится с помощью специальных маслоприемников, которые устанавливают­ся на специальных станках для обработки глубоких отверстий, обеспечи­вающих торцовое уплотнение между заготовкой и кондукторной втулкой.

Достоинства сверл БТА состоят в том, что благодаря высокой жест­кости трубчатого стебля подача, по сравнению с ружейными сверлами, увеличивается примерно в 2...4 раза, а стружка, удаляемая из зоны реза­ния по внутреннему каналу, не портит обработанную поверхность.

К недостаткам сверл БТА следует отнести трудности с надежным удалением стружки через относительно небольшое по сечению входное отверстие в режущей части, при закупоривании которого процесс сверле­ния становится невозможным.

Для хорошего дробления стружки на напайных твердосплав­ных пластинах затачиваются стружкодробящие уступы, а на механи­чески закрепляемых твердосплавных СМП предусматриваются сфери­ческие мелкие лунки, получаемые в процессе изготовления пластин.

 

* Обозначаются по названию международной ассоциации «Bohring and Tre­panning Association» (BTA).


Рис. 4. 153. Сверлильные головки БТА:

а - однокромочное сверло с напайной Т-образной твердосплавной пластиной (d = 6... 18 мм); б - однокромочная напайная головка (d = 18...30 мм);

<== предыдущая лекция | следующая лекция ==>
Недостатки геометрии спиральных сверл и способы ее улучшения при заточке | В - однокромочная головка с механическим креплением режущих и
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 5669; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.