КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методы декомпозиционного анализа
Разработанные до настоящего времени методы декомпозиции ориентированы в основном на детерминированные задачи и применяют дизъюнктивную декомпозицию по деятельности и единицам. Притом исходные задачи выбираются аддитивно сепарабельными по деятельностям. Для координации в основном применяют стимулирование с помощью цен результата или лимитирование при помощи лимитирования результатов. Замечание: у математической функции различают три уровня сепарабельности, которые в понижающемся порядке таковы: 1) аддитивно сепарабельная функция: f1= 2) мультипликативно сепарабельная функция: f2 = Пfj(xj); 3) несепарабельная функция: f3 =f(x). При этом логарифм мультипликативно сепарабельной функции аддитивно сепарабелен: . Таким образом, сепарабельность можно формально повысить за счет усложнения функции. Декомпозиция по деятельностям и единицам и координация с помощью цен результата в терминах классической математики (дифференциального исчисления) эпизодически разрабатывались еще в начале текущего столетия (А. Маршалл, А. Пигу). Но только те методы декомпозиции, которые базируются на двойственной теории оптимизации, дают принципам координации с помощью цен (классическая доктрина равновесных цен) математически последовательное объяснение и алгоритмы для вычисления этих цен. Математическая основа существует еще с XVIII века в виде метода неопределенных множителей Ж. Лагранжа. В трудах Л. В. Канторовича по линейному программированию (1939 г.) аналогами неопределенных множителей Лагранжа служат разрешающие множители, или объективно обусловленные оценки. Математическое содержание метода стимулирования с помощью цен результата состоит в следующем. От задачи с глобальными ограничительными условиями между единицами переходят к эквивалентной функции Лагранжа, в которой неопределенный множитель имеет содержание цены. Далее для анализа функции Лагранжа используются понятия седло-вой точки или двойственной функции. Экономическое толкование этого класса методов представляет собой классическую теорию конкурентных равновесных цен. Задача координирующего центра (рынка) состоит в том, чтобы корректировать цены по соотношению между предложением и спросом единиц. Поскольку балансовое соответствие предложения и спроса определяется фадиентом целевой функции центра, то корректировка цен в основном происходит на этой основе. Применимость этого класса методов ограничивается тем, что исходная задача должна быть аддитивно сепарабельна и иметь строгую вогнутость; другими словами, частные планирующие задачи здесь на каждом шаге должны иметь единственные решения. Последнее утверждение не распространяется на методы с нелинейными ценами. Метод Данцига — Вульфа обходит это препятствие с помощью того, что на последнем шаге координирующая задача вместо стимулирования применяет лимитирование деятельности в самой строгой форме (диктат). Другой, больший класс методов, который применяется при декомпозиции по деятельностям и единицам с помощью лимитирования результатов, начал развиваться несколько позже. Идея исходит от Я. Корнай и Т. Липтака (1961г.). Позднее ее разработал В.А.Волконский (1973 г.), развили К. А. Багриновский (1968 г.), Дж. Сильверман (1972 г.) и другие. Математическая идея лимитирования состоит в том, что ограничения исходной задачи распределяются по деятельности или по единицам, которые в этих пределах определяют локальные оптимумы. Координация используется для нахождения распределения ограничений, позволяющего достигнуть глобального оптимума. Индикативной информацией могут здесь служить двойственные решения частных задач планирования. Об экономическом содержании изложенного метода следует сказать, что решения двойственных задач описывают предельные эффективности выделенных ресурсов и обязательств. На этой основе ресурсы и обязательства перераспределяются до тех пор, пока эффективности не станут одинаковыми. Метод может использоваться как при линейных, так и при нелинейных аддитивно сепарабельных задачах. Преимущество этого метода в том, что в ходе решения приближенные планы являются допустимыми. Его недостаток — это сложность координации, связанная с трудностями обеспечения непротиворечивости частных задач. Некоторые комбинированные классы методов представляются также экономически эффективными. Дизъюнктивная композиция по времени и координация с помощью цен результата может рассматриваться как самостоятельный класс математических методов, в котором вместо функции Лагранжа применяется функция Гамильтона, т. е. это подход является версией принципа максимума Понтрягина. Разработки этого подхода были опубликованы В. Е. Дементьевым. Первая работа о конъюнктивной декомпозиции по результатам (ограничениям) и координации с помощью штрафов деятельности была опубликована в 1966 г. Дж. Лионсом и Р. Темамом, и далее этот подход был развит Ж. Сеа. Данный класс методов называется методом совмещения планов. По основной идее этих методов вся система частных задач состоит из планирующих задач. В каждой частной задаче в ходе итерации определяется весь план исходной задачи с учетом: • целевой функции исходной задачи; • части ограничений исходной задачи; • значений плана остальных задач на предыдущем шаге (с целью Дизъюнктивную декомпозицию по деятельности и единицам и комбинированную координацию, как уже указывалось, впервые применили Дж. Данциг и П. Вульф в 1960 г. Их идея такова: в ходе решения координация происходит с помощью цен результата, и на последнем шаге итерации применяется диктование. А. Чарнесом, Р. Кловером и К. Кортанеком был рассмотрен подход комбинирования цен результата и лимитов результата. Позднее этот подход исследовал Ю. Эннусте. Ф. Мартинес-Солер изучал применение цены деятельности и лимита результата, а Б. Т. Поляк и Н. В. Третьяков предложили сочетание цены результата и штрафа за результат. Принцип цены результата и штрафа за деятельность был использован Л. М. Дудкиным. Следует отметить, что по сравнению с уникоординацией при комбинированных методах координации существенно растет объем последней, но полученные результаты позволяют предполагать, что основанные на этом методы являются более общими и лучше сходятся. С точки зрения экономической науки вариант комбинации цен результата и лимитов результата кажется наиболее содержательным, так как сочетает гибкость координации посредством цен и стабильность, достигаемую лимитированием. Параллельное применение стимулирования и лимитирования в экономических системах очень распространено, причем лимитирование не только обеспечивает большую стабильность, но и позволяет также корректировать недостатки стимулирования. Таким образом, дальнейшее развитие этого метода представляет большой интерес: он может стать как методом решения, так и средством моделирования и анализа функционирования экономических процессов. В области разработки методов декомпозиции стохастических задач существуют лишь некоторые частные подходы (Д. Б. Юдин, Ю. Эннусте). Однако эти задачи представляют особый интерес для экономических исследований, так как экономические задачи являются по существу стохастическими, и анализ процессов координации представляется здесь особенно плодотворным. Общие трактовки в этом направлении предлагаются теорией экономического равновесия в условиях неопределенности. Однако работы по экономическому равновесию не содержат идеи иерархической координации. В области синтеза систем на основе методов декомпозиции развивается преимущественно формализованная теория механизма управления экономикой. В качестве математического аппарата в основном используется теорема X. Куна и А. Таккера о седловой точке, а также связи последней с задачами на оптимум. Это же направление продолжали работы О. Ланге, М. Месаровича, Я. Корнай, Н. П. Федоренко, А. Г. Аганбегяна, К. А. Багриновского, А. Г. Гранберга, В. И. Данилова-Данильяна, М. Г. Завельского и других. Указанные авторы в своих исследованиях старались исходить из возможно более общих экономических условий и описывать строгие модели экономических систем на базе декомпозиционных методов. Но зачастую для строгости им приходилось жертвовать общностью трактовки, а поэтому и адекватностью с реальными системами управления.
Дата добавления: 2014-01-11; Просмотров: 567; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |