Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Передаточное отношение планетарных и дифференциальных механизмов

(рис. 2.14)

Звенья, вращающиеся вокруг неподвижной оси, называются основными или центральными.

Центральное колесо 1 называется солнечным, а неподвижное 3 - коронным или корончатым. Зубчатое колесо 2 имеющее подвижную ось называется сателлитом. Звено Н называется водилом или поводком. Механизмы, в состав которых входят зубчатые колеса с подвижными осями называются планетарными или дифференциальными.

Планетарными (рис. 2.14 а) называются механизмы, имеющие одну степень свободы. Дифференциальные (рис. 2.14 б) механизмы имеют две и более степени свободы.

 

Рис. 2.14

Эти механизмы обязательно должны быть соосными, то есть оси солнечных колёс должны располагаться на одной и той же прямой линии.

Рассмотрим дифференциальный механизм (рис. 2.15).

где: n=4; ; .

, таким образом определённость в движении звеньев этого механизма будет в том случае, если будут известны законы движения двух его ведущих звеньев.

Так как сателлиты имеют подвижные оси, то использовать формулы для расчёта передаточного отношения механизмов с неподвижными осями не представляется возможным. В этом случае прибегают к методу инверсии (метод обращённого движения).

Будем рассматривать движение всех колёс относительно водила. Всем звеньям зададим вращательное движение с угловой скоростью водила, но в обратном направлении и найдём скорости всех звеньев механизма. Для этого вычтем угловую скорость водила из всех угловых скоростей колёс.

Рис. 2.15

 

Таблица 2.

№ Звеньев Скорость звена в действительном движении (до инверсии) Скорость звена в обращённом движении (после инверсии)
Колесо 1
Колесо 2
Колесо 2’
Колесо 3
Звено Н

Механизм, полученный в результате инверсии (остановки водила) называется обращённым (рис. 2.16). В результате получили обычную зубчатую передачу с неподвижными осями.

  (2.1)

Эту зависимость (2.1) называют формулой Виллиса для дифференциальных механизмов.

Если бы было n - колёс, то:

где s – солнечное колесо.

Дифференциальный механизм никакого определённого передаточного отношения не имеет, если ведущим является одно из звеньев (колесо или водило), и приобретает определённость, если ведущих колёс будет два.

Рис. 2.16

Передаточное отношение обращённого механизма можно рассчитать,

зная числа зубьев колёс.

У планетарных механизмов (рис. 2.16) одно из центральных (основных) колёс неподвижно, тогда формула Виллиса примет вид:

или в общем случае:

Рис. 2.17

Передаточное отношение планетарного механизма от любого n-го колеса равно 1 минус передаточное отношение от этого же самого колеса к солнечному колесу, при неподвижном водиле.

<== предыдущая лекция | следующая лекция ==>
Кинематика зубчатых передач | Графический метод кинематического исследования зубчатых механизмов
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1702; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.