Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение поверхностного интеграла 1 рода. Теорема существования

Механические приложения криволинейного интеграла 1 рода

Решение

.

Приведем уравнение кривой к каноническому виду

, , .

Это уравнение окружности с центром в точке и радиусом (рис. 8.3.3).

Перейдём к полярным координатам:

.

Уравнение кривой в полярных координатах имеет вид:

или , где .

Рис. 8.3.3.

.

Статические моменты дуги

Статический момент относительно начала координат:

.

Статические моменты относительно координатных осей:

. .

.

Статические моменты относительно координатных плоскостей:

. .

.

Координаты центра тяжести дуги

; ; ,

где – масса дуги.

Моменты инерции дуги

Момент инерции относительно начала координат:

.

Моменты инерции относительно координатных осей:

. . .

Моменты инерции относительно координатных плоскостей:

, , .

<== предыдущая лекция | следующая лекция ==>
Плоская кривая, заданна в полярных координатах | Определение. Пусть на гладкой поверхности задана функция
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 353; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.