КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сегнетоэлектрики. 9 страница
Открытие явления электромагнитной индукции имело большое значение, так как была доказана возможность получения электрического тока с помощью магнитного поля. Этим была установлена взаимосвязь между электрическими и магнитными явлениями, что послужило в дальнейшем толчком для разработки теории электромагнитного поля.
§ 44. Токи Фуко. Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных в переменное магнитное поле. Эти токи оказываются замкнутыми в толще проводника и поэтому называются вихревыми. Их также называют токами Фуко — по имени первого исследователя. Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему вихревые токи. Например, если между полюсами невключенного электромагнита массивный медный маятник совершает практически незатухающие колебания (рис. 44.1), то при включении тока он испытывает сильное торможение и очень быстро останавливается. Это объясняется тем, что возникшие токи Фуко имеют такое направление, что действующие на них со стороны магнитного поля силы тормозят движение маятника. Этот факт используется для успокоения (демпфирования) подвижных частей различных приборов. Если в описанном маятнике сделать радиальные вырезы, то вихревые токи ослабляются и торможение почти отсутствует. Рис. 44.1 Вихревые токи помимо торможения (как правило, нежелательного эффекта) вызывают нагревание проводников. Поэтому для уменьшения потерь на нагревание якоря генераторов и сердечники трансформаторов делают не сплошными, а изготовляют из тонких пластин, отделенных одна от другой слоями изолятора, и устанавливают их так, чтобы вихревые токи были направлены поперек пластин. Джоулева теплота, выделяемая токами Фуко, используется в индукционных металлургических печах. Индукционная печь представляет собой тигель, помещаемый внутрь катушки, в которой пропускается ток высокой частоты. В металле возникают интенсивные вихревые токи, способные разогреть его до плавления. Такой способ позволяет плавить металлы в вакууме, в результате чего получаются сверхчистые материалы. Вихревые токи возникают и в проводах, по которым течет переменный ток. Направление этих токов можно определить по правилу Ленца. На рис. 44.2, а показано направление вихревых токов при возрастании первичного тока в проводнике, а на рис. 44.2, б — при его убывании. В обоих случаях направление вихревых токов таково, что они противодействуют изменению первичного тока внутри проводника и способствуют его изменению вблизи поверхности. Таким образом, вследствие возникновения вихревых токов быстропеременный ток оказывается распределенным по сечению провода неравномерно — он как бы вытесняется на поверхность проводника. Это явление получило название скин-эффекта (от англ. skin — кожа) или поверхностного эффекта. Так как токи высокой частоты практически текут в тонком поверхностном слое, то провода для них делаются полыми. Рис. 44.2 Если сплошные проводники нагревать токами высокой частоты, то в результате скин-эффекта происходит нагревание только их поверхностного слоя. На этом основан метод поверхностной закалки металлов. Меняя часто ту поля, он позволяет производить закалку на любой требуемой глубине.
§ 45. Вращение рамки в магнитном поле. Явление электромагнитной индукции применяется для преобразования механической энергии в энергию электрического тока. Для этой цели используются генераторы, принцип действия которых можно рассмотреть на примере плоской рамки, вращающейся в однородном магнитном поле (рис. 45.1). Рис. 45.1 Пусть рамка вращается в однородном магнитном поле (В = const) равномерно с угловой скоростью = const. Магнитный поток, сцепленный с рамкой площадью S, в любой момент времени t, согласно (41.1), равен , где — угол поворота рамки в момент времени t (начало отсчета выбрано так, чтобы при было ). При вращении рамки в ней будет возникать переменная ЭДС индукции , (45.1) изменяющаяся со временем по гармоническому закону. ЭДС максимальна при , т.е. , (45.2) Учитывая (45.2), выражение (45.1) можно записать в виде , (45.3) Таким образом, если в однородном магнитном поле равномерно вращается рамка, то в ней возникает переменная ЭДС, изменяющаяся но гармоническому закону. Из формулы (45.2) вытекает, что (следовательно, и ЭДС индукции) находится в прямой зависимости от величин и, В и S. В России принята стандартная частота тока , поэтому возможно лишь возрастание двух остальных величин. Для увеличения В применяют мощные постоянные магниты или в электромагнитах пропускают значительный ток, а также внутрь электромагнита помещают сердечники из материалов с большой магнитной проницаемостью . Если вращать не один, а ряд витков, соединенных последовательно, то тем самым увеличивается S. Переменное напряжение снимается с вращающегося витка с помощью щеток, схематически изображенных на рис. 45.1. Процесс превращения механической энергии в электрическую обратим. Если по рамке, помещенной в магнитное поле, пропускать ток, то на нее будет действовать вращающий момент и рамка начнет вращаться. На этом принципе основана работа электродвигателей, предназначенных для превращения электрической энергии в механическую.
§ 46. Индуктивность контура. Самоиндукция. Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био—Савара—Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току в контуре: , (46.1) где L — коэффициент пропорциональности, называемый индуктивностью контура. Единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб. При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться ЭДС. Возникновение ЭДС индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией. Самоиндукция является частным случаем электромагнитной индукции. Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (41.4), полный магнитный поток сквозь соленоид (потокосцепление) равен . Подставив это выражение в формулу (46.1), получим . (46.2) т.е. индуктивность соленоида зависит от числа N витков соленоида, его длины , площади S и магнитной проницаемости вещества, из которого изготовлен сердечник соленоида. Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров в диэлектрической проницаемости среды. Применяя к явлению самоиндукции закон Фарадея, получим, что ЭДС самоиндукции . (46.3) Если контур не деформируется и магнитная проницаемость среды не изменяется, то L = const и . (46.4) где знак «—» обусловлен правилом Ленца, согласно которому наличие индуктивности в контуре приводит к замедлению изменения тока в нем. Если ток со временем возрастает, то и , т.е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его возрастание. Если ток со временем убывает, то и , т. е. индукционный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура. Токи самоиндукции, вознкающие в цепи, называют экстратоками самоиндукции. По влиянием экстратоков самоиндукции, при выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи. Рассмотрим процесс выключения тока в цепи, содержащей источник тока с ЭДС , резистор сопротивлением R и катушку индуктивностью L. Под действием внешней ЭДС в цепи течет постоянный ток (внутренним сопротивлением источника тока пренебрегаем). В момент времени t = 0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению ЭДС самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома , или . (46.5) Разделив в выражении (46.5) переменные, получим . (46.6) Интегрируя это уравнение по (от до ) и t (от 0 до t), находим , (46.7) или . (46.8) где - постоянная, называемая временем релаксации. Из (46.8) следует, что есть время, в течение которого сила тока уменьшается в е раз. Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (46.8) и определяется кривой 1 на рис. 46.1. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании. Рис. 46.1 При замыкании цепи помимо внешней ЭДС возникает ЭДС самоиндукции —, препятствующая возрастанию тока. По закону Ома, , (46.9) или . (46.10) Введя новую переменную , преобразуем это уравнение к виду . (46.11) В момент замыкания и . Следовательно, интегрируя по (от до ) и t (от 0 до t), находим , (46.12) или . (46.13) где — установившийся ток (при ). Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (46.13) и определяется кривой 2 па рис. 46.1. Сила тока возрастает от начального значения = 0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление. Оценим значение ЭДС самоиндукции, возникающей при мгновенном увеличении сопротивления цепи постоянного тока от до . Предположим, что мы размыкаем контур, когда в нем течет установившийся ток . При размыкании цепи ток изменяется по формуле (46.8). Подставив в нее выражение для и , получим . (46.14)
ЭДС самоиндукции . (46.15) т.е. при значительном увеличении сопротивления цепи (), обладающей большой индуктивностью, ЭДС самоиндукции может во много раз превышать ЭДС источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных ЭДС самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то ЭДС самоиндукции не достигнет больших значений.
§ 47. Взаимная индукция. Трансформаторы. Рассмотрим два неподвижных контура (1 и 2), расположенных достаточно близко друг от друга (рис. 47). Если в контуре 1 течет ток , то магнитный поток, создаваемый этим током (поле, создающее этот поток, на рисунке изображено сплошными линиями), пропорционален . Обозначим через Ф 21 ту часть потока, которая пронизывает контур 2. Тогда , (47.1) где — коэффициент пропорциональности. Рис. 47.1
Если ток изменяется, то в контуре 2 индуцируется ЭДС , которая по закону Фарадея равна и противоположна по знаку скорости изменения магнитного потока Ф 21, созданного током в первом контуре и пронизывающего второй: . (47.2) Аналогично, при протекании в контуре 2 тока магнитный поток (его поле изображено на рис. 47.1 штриховыми линиями) пронизывает первый контур. Если Ф1 2 — часть этого потока, пронизывающего контур 1, то , (47.3) Если ток изменяется, то в контуре 1 индуцируется ЭДС , которая равна и противоположна по знаку скорости изменения магнитного потока Ф 12, созданного током во втором контуре и пронизывающего первый: . (47.4) Явление возникновения ЭДС в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L 2l и L 12 называются взаимной индуктивностью контуров. Расчеты, подтверждаемые опытом, показывают, что L 2l = L 12. (47.5) Коэффициенты L 2l и L 12 зависят от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды. Единица взаимной индуктивности та же, что и для индуктивности, — генри (Гн). Рассчитаем взаимную индуктивность двух катушек, намотанных на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 47.2). Магнитная индукция поля, создаваемого первой катушкой с числом витков , током и магнитной проницаемостью сердечника, согласно (33.26), , (47.6) где — длина сердечника по средней линии. Магнитный поток сквозь один виток второй катушки . (47.7) Рис. 47. 2 Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмотку, содержащую N 2 витков, . (47.7) Поток создается током поэтому, согласно (47.1), получаем . (47.8) Если вычислить магнитный поток, создаваемый катушкой 2 сквозь катушку 1, то для L 12 получим выражение в соответствии с формулой (47.8). Таким образом, взаимная индуктивность двух катушек, намотанных на общий тороидальный сердечник, . (47.9) Рассмотренная выше система, состоящая из двух катушек, намотанных на общий сердечник, есть не что иное как трансформатор. Принцип действия трансформаторов — устройств, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы русским электротехником П. Н.Яблочковым (1847—1894) и русским физиком И.Ф.Усагиным (1855-1919). Принципиальная схема трансформатора показана на рис. 47.3. Первичная и вторичная катушки (обмотки), имеющие соответственно и витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с ЭДС , то в ней возникает переменный ток , создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в железном сердечнике и, следовательно, почти целиком пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление ЭДС взаимной индукции, а в первичной — ЭДС самоиндукции. Рис. 47.3 Ток первичной обмотки определяется согласно закону Ома: , (47.10) где — сопротивление первичной обмоткн. Падение напряжения на сопротивлении при быстроперемениых полях мало по сравнению с каждой из двух ЭДС, поэтому . (47.11) ЭДС взаимной индукции, возникающая во вторичной обмотке, . (47.12) Сравнивая выражения (47.11) и (47.12), получим, что ЭДС, возникающая во вторичной обмотке, , (47.13) где знак «—» показывает, что ЭДС в первичной и вторичной обмотках противоположны по фазе. Отношение числа витков , показывающее, во сколько раз ЭДС во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации. Пренебрегая потерями энергии, которые в современных трансформаторахне превышают 2% и связаны в основном с выделением в обмотках джоулевой теплоты и появлением вихревых токов, и применяя закон сохранения энергии, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы: , (47.14) откуда, учитывая соотношение (47.13),найдем , (47.15) т. е. токи в обмотках обратно пропорциональны числу витков в этих обмотках. Если , то имеем дело с повышающим трансформатором, увеличивающим переменную ЭДС и понижающим ток (применяются, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются); , то имеем дело с понижающим трансформатором, уменьшающим ЭДС и повышающим ток (применяются, например, при электросварке, так как для нее требуется большой ток при низком напряжении). Мы рассмотрели трансформаторы, имеющие только две обмотки. Однако трансформаторы, используемые в радиоустройствах, имеют 4—5 обмоток, обладающих разными рабочими напряжениями. Трансформатор, состоящий из одной обмотки, называется автотрансформатором. В случае повышающего автотрансформатора ЭДС подводится к части обмотки, а вторичная ЭДС снимается со всей обмотки. В понижающем автотрансформаторе напряжение сети подается па всю обмотку, а вторичная ЭДС снимается с части обмотки. §48. Энергия магнитного поля. Проводник, по которому протекает электрический ток, создает в окружающем пространстве магнитное поле, причем магнитное поле появляется и исчезает вместе с появлением и исчезновением тока. Магнитное поле, подобно электрическому, является носителем энергии. Изветно, что энергия магнитного поля равна работе, которая затрачивается током на создание этого поля. Рассмотрим контур индуктивностью L, по которому течет ток . С данным контуром сцеплен магнитный поток , причем при изменении тока на магнитный поток изменяется на . Однако для изменения магнитного потока на величину необходимо совершить работу . (48.1) Тогда работа по созданию магнитного потока будет . (48.2) Следовательно, энергия магнитного поля, связанного с контуром, . (48.3) Исследование свойств переменных магнитных полей, в частности распространения электромагнитных волн, явилось доказательством того, что энергия магнитного поля локализована в пространстве. Это соответствует представлениям теории поля. Энергию магнитного поля можно представить как функцию величин, характеризующих это поле в окружающем пространстве. Для этого рассмотрим частный случаи — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (48.3) выражение (46.2), получим . (48.4) Так как и , то . (48.5) где — объем соленоида. Магнитное поле соленоида однородно и сосредоточено внутри пего, поэтому энергия заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью. . (48.6) Выражение (48.6) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (19.8) для объемной плотности энергии электростатического поля, с той разницей, что электрические величины заменены в нем магнитными. Формула (48.6) выведена для однородного поля, но она справедлива и для неоднородных полей. Выражение (48.6) справедливо только для сред, для которых зависимость В от Н линейная, т.е. оно относится только к пара- и диамагнетикам. §49. Электромагнитная теория Максвелла. Анализируя законы электромагнетизма и явления электромагнитной индукции, Максвелл выдвинул две гипотезы, позволившие ему создать единую теорию электрических и магнитных явлений. Эта теория не только сумела объяснить все известные до него опытные законы, но и предсказала существование электромагнитного поля и электромагнитных волн. Теория Максвелла в дальнейшем получила блестящее подтверждение в опытах Герца, Попова и других и явилась новым этапом в развитии естествознания. Рассмотрим гипотезы Максвелла о существовании вихревого электрического поля и тока смещения. Из закона Фарадея для электромагнитной индукции (43.1)
Дата добавления: 2014-01-20; Просмотров: 456; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |