КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Совместные и совокупные измерения
Эти виды измерений характеризуются тем, что значения искомых величин рассчитывают по системе уравнений, связывающих их с некоторыми другими величинами, определяемыми посредством прямых или косвенных измерений. При этом измеряются несколько комбинаций значений указанных величин. Каждая такая комбинация позволяет получить одно уравнение, а система содержит всю информацию о значениях искомых величин и имеет вид где Рi – символ функциональной зависимости между величинами в i-м опыте; i =1; 2;...; n; n – число опытов; Qi – значения искомых величин, общее число которых равно m; – полученные в i-м опыте значения k величин, измеряемых прямыми или косвенными методами. Если Qj являются значениями одной и той же величины, то измерения называются совокупными, если разных физических величин, – то совместными. После подстановки в исходную систему уравнений результатов прямых или косвенных измерений и проведения необходимых преобразований получим n уравнений, содержащих лишь искомые величины я числовые коэффициенты: Такие уравнения называют условными. Для того чтобы рассчитать значения искомых величин, достаточно иметь m уравнений, т.е. столько же, сколько содержится неизвестных. Тогда результаты измерений и доверительные границы их погрешностей можно найти методами обработки результатов косвенных измерений. Однако обыкновенно для уменьшения погрешностей результатов измерений делается значительно больше измерений, чем это необходимо для определения неизвестных, т.е. n>m. Вследствие ограниченной точности определения величин Хr условные уравнения одновременно не обращаются в тождества, ни при каких значениях искомых величин. И поскольку найти истинные значения искомых величин невозможно, то задача сводится к нахождению их оценок, представляющих собой наилучшие приближения к истинным значениям. Предположим, что , где j = 1, 2,..., m, наилучшие приближения к неизвестным Qj. Если значения этих оценок подставить в условные уравнения, то их правые части будут отличаться от левых. Для получения тождеств нужно записать: (9.8) где vi – величины, называемые остаточными погрешностями условных уравнений. Если в систему условных уравнений подставить истинные значения искомых величин, то остаточные погрешности превратятся в случайные погрешности условных уравнений. Одним из наиболее общих способов отыскания оценок истинных значений измеряемых величин является регрессионный анализ, или, как его часто называют, метод наименьших квадратов. Согласно ему оценки выбираются так, чтобы минимизировать сумму квадратов остаточных погрешностей условных уравнений. Сумма квадратов остаточных погрешностей, определенных в соответствии с системой условных уравнений (9.8), составляет и достигает минимума при системе значений Qj обращающей в нуль все частные производные от S2 по искомым величинам: Выражая остаточные погрешности через функции, стоящие в левой части условных уравнений, получаем систему из m уравнений с m неизвестными: где j = 1, 2,..., m, которая может быть решена относительно оценок . искомых величин. При решении задачи в общем случае, когда условные уравнения не линейны, а результаты отдельных измерений коррелированны, иногда возникает ряд непреодолимых трудностей. Задача относительно несложно решается лишь тогда, когда условные уравнения линейны или приведены к линейным известными способами и при отсутствии корреляции между результатами отдельных наблюдений. Оценки, даваемые методом наименьших квадратов, являются состоятельными и несмещенными, а при нормальном распределении результатов измерений и эффективными.
Дата добавления: 2014-01-20; Просмотров: 630; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |