Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Полная группа событий




Полная группа событий. Противоположные события. Вероятность появления хотя бы одного события.

Игральный кубик подбрасывается три раза. Какова вероятность того, что 6 выпадет ровно два раза.

Решение:

Обозначим события:

А – 6 выпадет ровно два раза;

А 1 – 6 выпадет первый раз;

А 2 – 6 выпадет второй раз;

А 3 – 6 выпадет третий раз, соответственно противоположные им события:

Ā 1 – 6 не выпадет первый раз;

Ā 2 – 6 не выпадет второй раз;

Ā 3 – 6 не выпадет третий раз.

Очевидно, что А = А 1 А 2 Ā 3+ А 1 Ā 2 А 3+ Ā 1 А 2 А 3. Тогда по теореме сложения вероятностей совместных А 1 А 2 Ā 3; А 1 Ā 2 А 3; Ā 1 А 2 А 3 событий и по теореме произведения вероятностей независимых А 1; А 2; А 3; Ā 1; Ā 2; Ā 3 событий имеем:

 

 

Сумма вероятностей событий, образующих полную группу, равна единице:

р (А 1)+ р (A 2)+ р (А 3)+…+ р (An)=1.

 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 369; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.